
1
2
DRAWING WITH QUICKDRAW
 Demonstration Program: QuickDraw

Introduction
As stated at Chapter 11, QuickDraw is a collection of system software routines that your application uses
to perform imaging operations, that is, the construction and display of graphical information for display on
output devices such as screens and printers.

The Coordinate Plane, Points, Rectangles, and Regions
The following mathematical constructs are widely used in QuickDraw's functions and data types:

 The coordinate plane.

 The point.

 The rectangle.

 The region.

The Coordinate Plane
A Macintosh screen (or screens) represents part of a global coordinate plane bounded by the limits of
QuickDraw coordinates (-32768 to 32767). The (0,0) origin point of this global coordinate plane is at the
upper-left corner of the main screen. From the upper-left coordinate of the main screen, coordinate values
decrease to the left and up and increase to the right and down. Any pixel on the screen can be specified by
a vertical coordinate and a horizontal coordinate.
In addition to the global coordinate system, QuickDraw maintains a local coordinate system for every
window's graphics port. The relationship between local and global coordinates is shown at Fig 1.

Drawing With QuickDraw Version 1.0 12-1

FIG 1 - LOCAL AND GLOBAL COORDINATE SYSTEMS

- h

+ v

v

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v=60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

- v

+ h

h

GLOBAL ORIGIN

WINDOW ORIGIN

Points
The location on the coordinate plane where imaginary horizontal and vertical grid lines intersect is called a
point. Points themselves are dimensionless whereas a pixel is not. As shown at Fig 2, a pixel "hangs"
down and to the right of the point by which it is addressed. A pixel thus lies between the infinitely thin
lines of the coordinate grid.

FIG 2 - A POINT AND A PIXEL

POINT

PIXEL

GRID LINES

The data type for points is Point:
struct Point
{
 short v; // Vertical coordinate.
 short h; // Horizontal coordinate.
};
typedef struct Point Point;
typedef Point *PointPtr;

Rectangles
A rectangle, whose borders are infinitely thin in the same way that a point is infinitely small, is used to
define an area on the screen.
The data type for rectangles is Rect:

struct Rect
{
 short top;
 short left;
 short bottom;
 short right;
};
typedef struct Rect Rect;
typedef Rect *RectPtr;

If the bottom coordinate of a rectangle is equal to or less than the top, or the right coordinate is less than the
left, the rectangle is said to be an empty rectangle.

12-2 Version 1.0 Drawing With QuickDraw

Regions
A region is an arbitrary area, or set of areas, the outline of which is one or more closed loops. A region
can be concave or convex, can consist of one connected area or many separate ones, and can even have
holes in the middle. In the examples at Fig 3, the region on the left has a hole and the one on the right
consists of two unconnected areas.

FIG 3 - TWO REGIONS

BOUNDING
RECTANGLE

BOUNDING
RECTANGLE

Region Objects and Accessor Functions
QuickDraw stores information about regions in opaque data structures called region objects. The data
type RgnHandle is defined as a reference to a region object:

typedef struct OpaqueRgnHandle* RgnHandle;

One accessor function is provided to access the information in region objects:

Function Description
GetRegionBounds Get the region's bounding rectangle.

For a region which is a rectangle, the rectangle returned by GetRegionBounds defines the entire region. The
data for more complex regions is stored in the region object in a proprietary format. The function
IsRegionRectangular may be used to determine whether a specific region is rectangular.

The Graphics Pen, Foreground and Background Colours,
Pixel Patterns and Bit Patterns, and Transfer Modes

The Graphics Pen
The metaphorical graphics pen used for drawing lines and shapes in a graphics port is rectangular in shape
and its size (that is, its height and width) is measured in pixels. Whenever you draw into a graphics port,
the characteristics of the graphics pen determine how the drawing looks. Those characteristics are as
follows:

 Pen location, which is specified in local coordinates stored in the graphics port. The functions Move
and MoveTo are used to move the pen to a specified location, and the function GetPen gets the pen's
current location.

 Pen size, which is specified by the a width and a height (in pixels) stored in the graphics port. The
pen's default size is one-by-one pixel; however, PenSize can be used to change the size and shape up
to a 32,767-by-32767 pixel square. Note that, if either the width or height is set to 0, the pen does
not draw.

 Pen colour, that is, the graphics port's foreground colour.

 Pen pattern, which defines the pattern that the pen draws with.

 Pen transfer mode, a Boolean or arithmetic operation which determines how QuickDraw transfers
the pen pattern to the pixel map during drawing operations.

Drawing With QuickDraw Version 1.0 12-3

 Pen visibility, which is specified by an integer stored in the graphics port, indicating whether
drawing operations will actually appear. For example, for 0 or negative values, the pen draws with
"invisible ink". The functions ShowPen and HidePen are used to change pen visibility.

Getting and Setting the Pen State
The following functions are used to get and set the current pen state:

Function Description
GetPenState Returns, in a PenState structure, the graphics pen's current location, size, transfer mode, and pattern.
SetPenState Using information supplied by a PenState structure, sets the graphics pen's location, size, transfer mode,

and pattern.
PenNormal Resets the pen size, transfer mode, and pattern to the state initialised when the graphics port was opened.

Foreground and Background Colour
Foreground Colour

The function RGBForecolor is used to set the foreground colour in the graphics port. You may also use the
Palette Manager function PmForeColor to set the foreground colour.
The foreground colour is used by the graphics pen for drawing lines, framed shapes, and text. The
foreground colour is also used by QuickDraw shape painting functions.

Background Colour
The function RGBBackColor is used to set the background colour in the graphics port. You may also use the
Palette Manager function PmBackColor to set the background colour.
The background colour is used by QuickDraw erasing functions, and is also used by the ScrollRect function
to replace the scrolled pixels.

Pixel Patterns and Bit Patterns
Pixel Patterns

If you wish to draw or paint with a colour pattern rather than the colour set by RGBForecolor, you can set the
pen pixel pattern in the graphics port using SetPortPenPixPat or PenPixPat. (Initially, the pen pixel pattern in
the graphics port is all-"black". When you set a non-all-"black" pattern, the pen pattern in the graphics port
overrides the foreground colour.)
You define a pixel pattern in a 'ppat' resource. To retrieve the pixel pattern stored in the 'ppat' resource, you
use the GetPixPat function. The handle to a pixPat data structure returned by GetPixPat may then be used in a
call to SetPortPenPixPat or PenPixPat to set the pixel pattern.
Similarly, if you wish to erase with a pixel pattern rather than the background colour, or replace the pixels
scrolled by ScrollRect with a pixel pattern rather than the background colour, you can set the background
pixel pattern in the graphics port using SetPortBackPixPat or BackPixPat. (Initially, the background pixel
pattern in the graphics port is all-"white". When you assign a non-all-"white" pattern, the background
pattern in the graphics port overrides the background colour)
In addition to drawing, painting and erasing functions, QuickDraw includes shape filling functions, which
may be used to fill a specified shape using a specified pixel pattern. A handle to a pixPat data structure is
passed in the thePPat parameter of these functions.

Bit Patterns
After drawing or painting with a pixel pattern, you can return to drawing or painting with the foreground
colour by simply restoring the default all-"black" pattern by calling PenPat and passing in the bit pattern
contained in the QuickDraw global variable black as follows:

Pattern blackPattern;

12-4 Version 1.0 Drawing With QuickDraw

PenPat(GetQDGlobalsBlack(&blackPattern));

After erasing with a pixel pattern, you can return to erasing with the background colour by simply restoring
the default all-"white" pattern by calling BackPat and passing in the bit pattern contained in the QuickDraw
global variable white as follows:

Pattern whitePattern;

BackPat(GetQDGlobalsWhite(&whitePattern));

When you use the PenPat and BackPat functions, QuickDraw constructs a pixel pattern equivalent to the bit
pattern, The graphics port's current foreground colour is used for the "black" bits in the bit pattern, and the
background colour is used for the "white" bits.
The PenPat and BackPat functions may also be used to set other bit patterns in the graphics port.

Transfer Modes
The term transfer mode may be considered as a generic term encompassing three different transfer mode
types. Each has to do with the way source pixels interact with destination pixels during drawing, painting,
erasing, filling, and copying operations. The three types of transfer mode are as follows:

 Boolean Pattern Mode. Boolean pattern modes apply to line drawing, framing, painting,
erasing, and filling operations.

 Boolean Source Mode. Boolean source modes apply to text drawing and copying
operations.

 Arithmetic Source Mode. Arithmetic source modes apply to drawing (including text
drawing), painting, and copying operations.

Boolean Pattern Modes
Pattern modes may be set as pen transfer modes in the graphics port using the PenMode function. The
modes are represented by eight constants, each of which relates to a specific Boolean operation (COPY,
OR, XOR, and BIC (for bit clear)) and their inverse variants.
The effects of these modes are best explained assuming a 1-bit (black-and-white) environment in which the
foreground colour is black and the background colour is white. The following lists the pattern modes and
describes the effect of source pixels on destination pixels in such an environment.

Pattern
Mode

Action On Destination Pixel

If source pixel is
black

If source pixel is white

patCopy Apply foreground colour. Apply background colour.
patOr Apply foreground colour. Leave alone.
patXor Invert. Leave alone.
patBic Apply background colour. Leave alone.
notPatCopy Apply background colour. Apply foreground colour.
notPatOr Leave alone. Force black.
notPatXor Leave alone. Invert.
notPatBic Leave alone. Apply background colour.

These effects are illustrated at Fig 4. Note particularly that patCopy causes the destination pixels to be
completely over-written. patCopy is the transfer mode initially set in the graphics port.

Drawing With QuickDraw Version 1.0 12-5

FIG 4 - EFFECT OF PATTERN MODES

DESTINATION SOURCE

patCopy patOr patXor patBic notPatCopy notPatOr notPatXor notPatBic

Boolean Source Modes
Boolean source modes may be set as text in the graphics port using the function TextMode, and may be
passed as parameters in QuickDraw functions for copying pixel images. The Boolean source modes are
the equivalent in text drawing and copying to the Boolean pattern mode used for non-text drawing,
painting, filling, and erasing operations.
The relevant constants are srcCopy, srcOr, srcXor, srcBic, notSrcCopy, notSrcOr, notSrcXor, and notSrcBic. The
additional non-standard mode grayishTextOr is useful for drawing text in deactivated or disabled user
interface objects. (This mode is considered non-standard because it is not stored in pictures and printing
with it is undefined.)

Arithmetic Source Modes
Arithmetic source modes may be set in the graphics port, and may be passed as parameters in QuickDraw
functions for copying pixel images.
Arithmetic source modes perform arithmetic operations on the values of the red, green and blue
components of the source and destination pixels. Because they work with RGB colours rather than colour
table indexes, arithmetic transfer modes produce predictable results on indexed devices. The arithmetic
source modes and their effects in a colour environment are as follows:

Constant Valu
e

Description

blend 32 Destination pixel is replaced with a blend of the source and destination pixel colours. Revert to
srcCopy mode if the destination is a bitmap or 1-bit pixel image.

addPin 33 Destination pixel is replaced with the sum of the source and destination pixel colours up to a
maximum allowable value. Revert to srcBic mode if the destination is a bitmap or 1-bit pixel
image.

addOver 34 Destination pixel is replaced with the sum of the source and destination pixel colours, but if the
value of the red, green or blue component exceeds 65,536, then subtract 65,536 from that value.
Revert to srcXor mode if the destination is a bitmap or 1-bit pixel image.

subPin 35 Destination pixel is replaced with the difference of the source and destination pixel colours, but
not less than a minimum allowable value. Revert to srcOr mode if the destination is a bitmap or
1-bit pixel image.

transparent 36 Source and destination pixel are replaced with the source pixel if the source pixel is not equal to
the background colour.

addMax 37 Destination pixel is replaced with the colour containing the greater saturation of each of the RGB
components of the source and destination pixels. Revert to srcBic mode if the destination is a
bitmap or 1-bit pixel image.

subOver 38 Destination pixel is replaced with the difference of the source and destination pixel colours, but if
the value of the red, green or blue is less than 0, add the negative result to 65,536. Revert to
srcXor mode if the destination is a bitmap or 1-bit pixel image.

adMin 39 Destination pixel is replaced with the colour containing the lesser saturation of each of the RGB
components of the source and destination pixels. Revert to srcOr mode if the destination is a
bitmap or 1-bit pixel image.

12-6 Version 1.0 Drawing With QuickDraw

Drawing Lines and Framed Shapes

Functions for Drawing Lines
You can move the graphics pen to a specified location, and you can draw lines from that location. Lines
are drawn using the current graphics pen size, foreground colour or pen pixel/bit pattern, and pen pattern
mode.
Functions for moving the graphics pen and drawing lines are as follows:

Functi
on

Description

MoveTo Moves the graphics pen location to the specified location, in local coordinates.
Move Moves the graphics pen a specified distance from its current location.
LineTo Draws a line from the current pen location to the specified location, in local coordinates.
Line Draws a line a specified distance from the graphics pen's current location.

Fig 5 shows a line drawn with a pen of size 20-by-40 pixels. Note that the pen "hangs" below and to the
right of the defining points,

FIG 5 - A LINE DRAWN BY LineTo OR Line

POINT

POINT

PEN SIZE 20
BY 40 PIXELS

Functions for Drawing Framed Shapes
Framing a shape draws its outline only, using the current pen size, foreground colour or pen pixel/bit
pattern, and pen pattern mode. The pixels in the interior of the shape are unaffected. Framed shapes are
drawn using the current graphics pen size, foreground colour or pen pixel/bit pattern, and pen pattern
mode.
Functions for drawing framed shapes are as follows:

Function Description
FrameRect Draws a rectangle, the position and size of which are defined by a Rect structure.
FrameOval Draws an oval, the position and size of which are determined by a bounding rectangle defined by a

Rect structure.
FrameRoundRect Draws a rounded rectangle, the position and size of which are determined by a bounding rectangle

defined by a Rect structure. Curvature of the corners is defined by ovalWidth and ovalHeight parameters.
FrameArc Draws an arc, the position and size of which are determined by a bounding rectangle defined by a Rect

structure. Starting point and arc extent are determined by startAngle and arcAngle parameters.
FramePoly Draws a polygon by "playing back" all the line drawing calls that define it.
FrameRgn Draws an outline around a specified region. The line is drawn just inside the region.

Fig 6 shows various framed shapes drawn with various graphics pen sizes and bit patterns. Note that the
bounding rectangles completely enclose the shapes they bound, that is, no pixels extend outside the
infinitely thin lines of the bounding rectangle. Note also that the arc is a portion of the circumference of an
oval bounded by a pair or radii joining at the oval's centre.

Drawing With QuickDraw Version 1.0 12-7

FIG 6 - FRAMED SHAPES DRAWN WITH QUICKDRAW FRAMED SHAPE DRAWING FUNCTIONS

A ROUNDED RECTANGLE DRAW BY FrameRoundRectAN ARC DRAWN BY FrameArcA POLYGON DRAWN BY FramePoly

RECTANGLE AS
DEFINED BY Rect.
(SHOWN FOR
ILLUSTRATIVE
PURPOSES ONLY.)

A RECTANGLE DRAWN BY FrameRect

DIAMETER OF
CURVATURE

BOUNDING
RECTANGLE
ROUNDED
RECTANGLE ARC

BOUNDING RADIUS

BOUNDING
RADIUS

BOUNDING RECTANGLE

RECTANGLE AS
DRAWN BY
FrameRect WITH
20 BY 40
GRAPHICS PEN

OVAL AS DRAWN
BY FrameOval
WITH 30 BY 10
GRAPHICS PEN

RECTANGLE AS
DEFINED BY Rect.
(SHOWN FOR
ILLUSTRATIVE
PURPOSES ONLY.)

AN OVAL DRAWN BY FrameOval

Framed Polygons and Regions
Framed polygons and regions require that you call several functions to create and draw them. You begin
by calling a function that collects drawing commands into a definition for the object. You then use
drawing functions to define the object before calling a function which signals the end of the object
definition. Finally, you use a function which draws the newly-defined object.

Framed Polygons
To define a polygon you must first call OpenPoly. You then call LineTo a number of times to create lines
from the first vertex to the second, from the second vertex to the third, etc. You then call ClosePoly, which
completes the definition process. After defining a polygon in this way, you can draw the polygon, as a
framed polygon, using FramePoly.
Note that, in the framed polygon at Fig 5, the final defining line from the last vertex back to the first vertex
was not drawn during the definition process. Note also that, as in all line drawing, FramePoly hangs the pen
down and to the right of the infinitely thin lines that define the polygon.

Framed Regions
To define a region, you can use any set of lines or shapes, including other regions, so long as the region's
outline consists of one or more closed loops. First, however, you must call NewRgn and OpenRgn. You then
use line, shape, or region drawing commands to define the region. When you have finished collecting
commands to define the outline of the region, you call CloseRgn. You can then draw the framed region
using FrameRegion.

Drawing Painted and Filled Shapes
Painting a shape fills both its outline and its interior with the current foreground colour or graphics pen
pixel/bit pattern. Filling a shape fills both its outline and its interior with a pixel pattern or bit pattern
passed in a parameter of the QuickDraw shape filling functions.
Transfer Mode. Painting operations utilise the current graphics pen pattern mode. In filling
operations, the transfer mode is invariably the pattern mode patCopy, meaning that the destination pixels are
always completely overwritten.

12-8 Version 1.0 Drawing With QuickDraw

Functions for Painting and Filling Shapes
The following lists the available functions for painting and filling shapes:

Function Description
PaintRect Fills a rectangle with the current foreground colour or graphics pen pixel/ bit pattern.
PaintOval Fills an oval with the current foreground colour or graphics pen pixel/ bit pattern.
PaintRoundRect Fills a round rectangle with the current foreground colour or graphics pen pixel/ bit pattern.
PaintArc Fills a wedge with the current foreground colour or graphics pen pixel/ bit pattern.
PaintPoly Fills a polygon with the current foreground colour or graphics pen pixel/ bit pattern.
PaintRgn Fills a region with the current foreground colour or graphics pen pixel/ bit pattern.
FillRect
FillCRect

Fills a rectangle with a specified bit pattern.
Fills a rectangle with a specified pixel pattern.

FillOval
FillCOval

Fills an oval with a specified bit pattern.
Fills an oval with a specified pixel pattern.

FillRoundRect
FillCRoundRect

Fills a round rectangle with a specified bit pattern.
Fills a round rectangle with a specified pixel pattern.

FillArc
FillCArc

Fills a wedge of an oval with a specified bit pattern.
Fills a wedge of an oval with a specified pixel pattern.

FillPoly
FillCPoly

Fills a polygon with a specified bit pattern.
Fills a polygon with a specified pixel pattern.

FillRgn
FillCRgn

Fills a region with a specified bit pattern.
Fills a region with a specified pixel pattern.

Wedges
The wedges drawn by PaintArc, FillArc, and FillCArc are pie-shaped segments of an oval bounded by a pair of
radii joining at the oval's centre. A wedge includes part of the oval's interior. Like the framed arc, wedges
are defined by the bounding rectangle that encloses the oval, along with a pair of angles marking the
positions of the bounding radii. Fig 7 shows a wedge.

Painted and Filled Polygons and
Regions

The general procedure for drawing painted and filled polygons and regions is the same as described for
their framed counterparts, above.
Fig 7 shows the polygon as defined for the framed polygon at Fig 6, but this time drawn with one of the
polygon painting or filling functions. Note that, although the final defining line from the last vertex back
to the first vertex was not drawn, the painting and filling functions complete the polygon (whereas
FramePoly did not).
Fig 7 also shows a region comprising two rectangles and an overlapping oval, drawn using PaintRgn. Note
that, where two regions overlap, the additional area is added to the region and the overlap is removed from
the region.

FIG 7 - A WEDGE, A PAINTED OR FILLED POLYGON, AND A PAINTED OR FILLED REGION

A WEDGE

WEDGE

BOUNDING RECTANGLE

BOUNDING
RADIUS

BOUNDING RADIUS

A PAINTED OR FILLED REGIONA PAINTED OR FILLED POLYGON

Drawing With QuickDraw Version 1.0 12-9

Erasing and Inverting Shapes
Erasing a shape fills both its outline and its interior with the background colour or background pixel/bit
pattern. Inverting a shape simply inverts all the pixels in the shape; for example, all black pixels become
white, and vice versa.
Transfer Mode. In erasing operations, the transfer mode is invariably the pattern mode patCopy,
meaning that the destination pixels are always completely overwritten.

Functions for Erasing and Inverting Shapes
The following list the available functions for painting and filling shapes:

Function Description
EraseRect Fills a rectangle with the current background colour or pixel/ bit pattern.
EraseOval Fills an oval with the current background colour or pixel/ bit pattern.
EraseRoundRect Fills a round rectangle with the current background colour or pixel/ bit pattern.
EraseArc Fills a wedge with the current background colour or pixel/ bit pattern.
ErasePoly Fills a polygon with the current background colour or pixel/ bit pattern.
EraseRgn Fills a region with the current background colour or pixel/ bit pattern.
InvertRect Inverts all the pixels in a rectangle.
InvertOval Inverts all the pixels in an oval.
InvertRoundRect Inverts all the pixels in a round rectangle.
InvertArc Inverts all the pixels in a wedge.
InvertPoly Inverts all the pixels in a polygon.
InvertRgn Inverts all the pixels in a region.

Drawing Pictures
Your application can record a sequence of QuickDraw drawing operations in a picture and play its image
back later. Fig 8 shows an example of a simple picture containing a filled rectangle, a filled oval, and some
text.

FIG 8 - A SIMPLE QUICKDRAW PICTURE

TEXT
The subject of pictures is addressed in more detail at Chapter 13.

Drawing Text

Setting the Font
The font used to draw text in a graphics port may be set using the function TextFont. TextFont takes a single
parameter, of type SInt16, which may be either a predefined constant or a font family ID number.
Although predefined constants remain in the header file Fonts.h, their use is now discouraged by Apple.
You can get the font family ID using GetFNum.1 For example, the following sets the current font to
Palatino:
1 If you know the font family ID, you can get its name by calling the Font Manager's GetFontName function. If you do not
know either the font family ID or the font name, you can use the Resource Manager's GetIndResource function followed by the
GetResInfo function to determine the names and IDs of all available fonts.

12-10 Version 1.0 Drawing With QuickDraw

SInt16 fontNum;

GetFNum("\pPalatino",&fontNum);
TextFont(fontNum);

Setting and Modifying the Text Style
You use the function TextFace to change the text style, using any combination of the constants bold, italic,
underline, outline, shadow, condense, and extend. Some examples are as follows:

TextFace(bold); // Set to bold.
TextFace(bold | italic); // Set to bold and italic.)
TextFace(GetPortTextFace(thePort) | bold); // Add bold to existing.
TextFace(GetPortTextFace(thePort) &~ bold); // Remove bold.
TextFace(normal); // Set to plain.

Setting the Font Size
You use the function TextSize to change the font size in typographical points. A point is approximately
1/72 inch.

Changing the Width of Characters
Widening and narrowing space and non-space characters lets you meet special formatting requirements.
You use SpaceExtra to specify the extra pixels to be added to or subtracted from the standard width of the
space character. SpaceExtra is ordinarily used in text-justification functions.

Transfer Mode
The transfer mode initially set in the graphics port is the Boolean source mode srcOr. This mode causes the
colour of the glyph2 to be determined by the foreground colour and the drawn glyph to completely
overwrite the existing pixels. (In this mode only those bits which make up the actual glyph are drawn.)
You should generally use either srcOr or srcBic when drawing text, because all other transfer modes draw the
character's background as well as the glyph itself. This can result in the clipping of characters by adjacent
characters.

Copying Pixel Images Between Graphics Ports
QuickDraw provides the following three functions for copying pixel images between graphics ports:

 CopyBits, which copies a pixel image to another graphics port, optionally allowing you to:

 Resize the image.

 Modify the image with transfer modes.

 Clip the image to a region.

 CopyMask, which copies a pixel image to another graphics port, allowing you to:

 Resize the image.

 Modify the image by passing it through a mask.

 CopyDeepMask, which combines the effects of CopyBits and CopyMask, optionally allowing you to:

 Resize the image.

 Clip the image to a region.

 Specify a transfer mode.

 Modify the image by passing it through a mask.

2 A glyph is the visual representation of a character.

Drawing With QuickDraw Version 1.0 12-11

The mask used by CopyMask and CopyDeepMask may be another pixel map whose pixels indicate
proportionate weights of the colours for the source and destination pixels.
The CopyBits, CopyMask, and CopyDeepMask functions date from the era of black-and-white Macintoshes,
which is why they expect a pointer to a bitmap in their source and destination parameters. Thus, when you
are copying pixel maps using these functions, you must cast the address of the handle to the pixel map to a
pointer to a bitmap. By looking at certain information in the graphics port object, CopyBits, CopyMask, and
CopyDeepMask can establish that you have passed the functions a handle to a pixel map rather than the base
address of a bitmap.

Using Masks
With CopyMask and CopyDeepMask, you supply a pixel map to act as the mask. The mask's pixels
proportionally select between source and destination pixel values.
In the case of masks that are 1 bit deep, black bits in the mask cause the destination pixel to take the colour
of the source pixel and white bits cause the destination pixel to retain its current colour. In the case of
masks with pixel depths greater than 1, Colour QuickDraw takes a weighted average between source and
destination colours. For example, a blue mask (that is, one with high values for the blue components of all
pixels) filters out blue values coming from the source.

Transfer Modes
CopyBits and CopyDeepMask both allow you to specify the transfer mode, which can be either a Boolean
source mode or an arithmetic source mode.

The Importance of Foreground and Background Colour
Applying a foreground colour other than black or a background colour other than white to the pixel can
produce an unexpected result. For consistent results, you should set the foreground colour to black and the
background colour to white before using CopyBits, CopyMask, or CopyDeepMask. (That said, setting foreground
and background colours to something other than black or white can achieve some interesting colouration
effects.)

Dithering
You can use dithering with CopyBits and CopyDeepMask. Dithering is a technique involving the mixing of
existing colours to create the illusion of a third colour. This is most useful for images displayed on indexed
devices, which can only display a limited number of colours at any one time.
You can add dithering to any transfer mode by adding the following constant to the transfer mode:

ditherCopy = 64 // Add to source mode for dithering.

Copying From Offscreen Graphics Ports
To gracefully display complex images, your application should construct the image in an offscreen
graphics world and then use CopyBits to transfer the image to the onscreen graphics port. (Offscreen
graphics worlds are addressed at Chapter 13.)

Scrolling Pixels in the Port Rectangle
You can use ScrollRect to scroll the pixels in the port rectangle. ScrollRect takes four parameters: the
rectangle to scroll, a horizontal distance to scroll, a vertical distance to scroll, and a region reference.
ScrollRect is a special form of CopyBits which copies bits enclosed by a rectangle and stores them within that
same rectangle. The vacated area is filled with the current background colour or pixel/bit pattern.

12-12 Version 1.0 Drawing With QuickDraw

Manipulating Rectangles and Regions
QuickDraw provides many functions for manipulating rectangles and regions. You can use the functions
which manipulate rectangles to manipulate any shape based on a rectangle, that is, rounded rectangles,
ovals , arcs, and wedges.
For example, you could define a rectangle to bound an oval and then frame the oval. You could then use
OffsetRect to move the oval's bounding rectangle downwards. Using the offset bounding rectangle, you
could frame a second, connected oval to form a figure eight with the first oval. You could then use that
shape to help define a region. You could create a second region, and then use UnionRgn to create a region
from the union of the two.

Manipulating Rectangles
The following summarises the functions for manipulating, and performing calculations on, rectangles:

Function Description
EmptyRect Determine whether a rectangle is an empty rectangle.
EqualRect Determine whether two rectangles are equal.
InsetRect Shrinks or expands a rectangle.
OffsetRect Moves a rectangle.
PtInRect Determines whether a pixel is enclosed in a rectangle.
PtToAngle Calculates the angle from the middle of a rectangle to a point.
Pt2Rect Determines the smallest rectangle that encloses two points.
SectRect Determines whether two rectangles intersect.
UnionRect Calculates the smallest rectangle that encloses two rectangles.

Manipulating Regions
The following summarises the functions for manipulating, and performing calculations on, regions:

Function Description
CopyRgn Makes a copy of a region.
DiffRgn Subtracts one region from another.
EmptyRgn Determines whether a region is empty.
EqualRgn Determines whether two regions have identical sizes, shapes, and locations.
InsetRgn Shrinks or expands a region.
OffsetRgn Moves a region.
PtInRgn Determines whether a pixel is within a region.
RectInRgn Determines whether a rectangle intersects a region.
RectRgn Changes the structure of an existing region to that of a rectangle (using a Rect).
SectRgn Calculates the intersection of two regions.
SetEmptyRgn Sets a region to empty.
SetRectRgn Changes the structure of an existing region to that of a rectangle (using coordinates).
UnionRgn Calculates the union of two regions.
XorRgn Calculates the difference between the union and the intersection of two regions.

Manipulating Polygons
You can use OffSetPoly to move a polygon; however, QuickDraw provides no other functions for
manipulating polygons.

Scaling Shapes and Regions Within the Same Graphics Port
To scale shapes and regions within the same graphics port, you can use the functions ScalePt, MapPt, MapRect,
MapRgn, and MapPoly.

Drawing With QuickDraw Version 1.0 12-13

Highlighting
Highlighting is used when selecting and deselecting objects such as text or graphics. TextEdit, for
example, uses highlighting to indicate selected text. If the current highlight colour is, for example, blue,
TextEdit draws the selected text, then uses InvertRgn to produce a blue background for the text.
The system highlight colour, which can be changed by the user at the Highlight Color item in the
Appearance pane of the Appearance control panel, is stored in a low memory global represented by the
symbolic name HiliteRGB. It can be retrieved using LMGetHiliteRGB. You can override the default colour
using the function HiliteColor. The current colour is copied the graphics port object, and may be retrieved
from there using the function GetPortHiliteColor.
Color QuickDraw implements highlighting by replacing the background colour with the highlight colour.
Another low memory global, represented by the symbolic name HiliteMode, contains a byte which represents
the current highlight mode. One bit in that byte, represented by the constant pHiliteBit, is used to toggle the
background and highlight colours.
Because Color QuickDraw resets the highlight bit after performing each drawing operation, your
application must always clear the highlight bit immediately before calling InvertRgn (or, indeed, any of the
other drawing or image-copying function that uses the patXor or srcXor transfer modes.)
The highlight mode can be retrieved and set using LMGetHiliteMode and LMSetHiliteMode, and BitClr may be
used to clear the highlight bit:

UInt8 hiliteMode;
...
hiliteMode = LMGetHiliteMode();
BitClr(&hiliteMode,pHiliteBit);
LMSetHiliteMode(hiliteMode);

Another way to use highlighting is to add this constant to the transfer mode you pass in calls to the
functions PenMode, CopyBits, CopyDeepMask and TextMode:

hilite = 50 // Add to source or pattern mode for highlighting.

Drawing Other Graphics Entities
In addition to drawing lines, rectangles, rounded rectangles, ovals, arcs, wedges, polygons and regions, and
text, you can also use QuickDraw to draw the following:

 Cursors.

 Icons.

Cursors and Icons are addressed at Chapter 13.

Saving and Restoring the Graphics Port Drawing State
As stated above, the functions GetPenState and SetPenState are used to save and restore the graphics pen's
location, size, transfer mode, and pattern, and PenNormal is used to initialise the pen's size, transfer mode,
and pattern.
Typically, an application calls GetPenState at the beginning of a function that changes the pen's location,
size, transfer mode, and/or pattern and restores the saved state to the pen on exit from that function.
Depending on its requirements, an application might also save and restore the graphics port's foreground
and background colours, and the text transfer mode, in the same way.
Since the introduction of the Appearance Manager, it has also become necessary to save and restore the
pen pixel/bit pattern and background pixel/bit pattern in functions that call the Appearance Manager
functions SetThemeBackground, SetThemePen, and/or SetThemeWindowBackground. Recall from Chapter 6 —
The Appearance Manager that constants of type ThemeBrush are passed in the inBrush parameter of these
Appearance Manager functions and that the value in the inBrush parameter can represent either a colour or a
pattern depending on the current appearance.

12-14 Version 1.0 Drawing With QuickDraw

Accordingly, in the era of the Appearance Manager, applications which call SetThemeBackground and/or
SetThemePen will need to take measures to save and restore the complete graphics port drawing state and, if
required, normalise that state.
The following functions are used for saving, restoring, and normalising the graphics port drawing state:

Function Description
GetThemeDrawingState Obtains the drawing state of the current graphics port.
SetThemeDrawingState Sets the drawing state of the current graphics port.
NormalizeThemeDrawingState Sets the current graphics port to the default drawing state.
DisposeThemeDrawingState Releases the memory associated with a reference to a graphics port's drawing state.

(Note that this memory may also be released by passing true in the inDisposeNow
parameter of SetThemeDrawingState.)

Information about the current state of the graphics port is stored in a structure of type ThemeDrawingState.
This is a private data structure.

Drawing With QuickDraw Version 1.0 12-15

Main QuickDraw Constants, Data Types and Functions

Constants
Boolean Pattern Modes
patCopy = 8
patOr = 9
patXor = 10
patBic = 11
notPatCopy = 12
notPatOr = 13
notPatXor = 14
notPatBic = 15

Boolean Source Modes
srcCopy = 0
srcOr = 1
srcXor = 2
srcBic = 3
notSrcCopy = 4
notSrcOr = 5
notSrcXor = 6
notSrcBic = 7

Arithmetic Transfer Modes
blend = 32
addPin = 33
addOver = 34
subPin = 35
transparent = 36
addMax = 37
subOver = 38
adMin = 39

Add Dithering to Transfer Modes
ditherCopy = 64

Highlighting
hilite = 50
hiliteBit = 7
pHiliteBit = 0

Pattern List Resource ID for Pattern Resources in the System File
sysPatListID = 0

Data Types
Point
struct Point
{
 short v;
 short h;
};

typedef struct Point Point;
typedef Point *PointPtr;

Rect
struct Rect
{
 short top;
 short left;
 short bottom;
 short right;
};

typedef struct Rect Rect;
typedef Rect *RectPtr;

12-16 Version 1.0 Drawing With QuickDraw

Region
typedef struct OpaqueRgnHandle *RgnHandle;

Polygon
struct Polygon
{
 short polySize;
 Rect polyBBox;
 Point polyPoints[1];
};

typedef struct Polygon Polygon;
typedef Polygon *PolyPtr, **PolyHandle;

PenState
struct PenState
{
 Point pnLoc;
 Point pnSize;
 short pnMode;
 Pattern pnPat;
};

typedef struct PenState PenState;

Functions
Managing the Graphics Pen
void HidePen(void);
void ShowPen(void);
void GetPen(Point *pt);
void GetPenState(PenState *pnState);
void SetPenState(const PenState *pnState);
void PenSize(short width,short height);
void PenMode(short mode);
void PenNormal(void);

Getting and Setting Foreground, Background , and Pixel Colour
void RGBForeColor(const RGBColor *color);
void RGBBackColor(const RGBColor *color);
void GetForeColor(RGBColor *color);
void GetBackColor(RGBColor *color);
void GetCPixel(short h,short v,RGBColor *cPix);
void SetCPixel(short h,short v,const RGBColor *cPix);

Creating and Disposing of Pixel Patterns
PixPatHandle GetPixPat(short patID);
PixPatHandle NewPixPat(void);
void CopyPixPat(PixPatHandle srcPP,PixPatHandle dstPP);
void MakeRGBPat(PixPatHandle pp,const RGBColor *myColor);
void DisposePixPat(PixPatHandle pp);

Getting Pattern Resources
PatHandle GetPattern(short patternID);
void GetIndPattern(Pattern *thePat,short patternListID,short index);

Changing the Pen and BackGround Pixel Pattern and Bit Pattern
void BackPixPat(PixPatHandle pp);
void PenPixPat(PixPatHandle pp);
void BackPat(const Pattern *pat);
void PenPat(const Pattern *pat);

Drawing Lines
void MoveTo(short h,short v);
void Move(short dh,short dv);
void LineTo(short h,short v);
void Line(short dh,short dv);

Drawing Rectangles
void FrameRect(const Rect *r);
void PaintRect(const Rect *r);
void FillRect(const Rect *r,ConstPatternParam pat);

Drawing With QuickDraw Version 1.0 12-17

void FillCRect(const Rect *r,PixPatHandle pp);
void InvertRect(const Rect *r);
void EraseRect(const Rect *r);

Drawing Rounded Rectangles
void FrameRoundRect(const Rect *r,short ovalWidth,short ovalHeight);
void PaintRoundRect(const Rect *r,short ovalWidth,short ovalHeight);
void FillRoundRect(const Rect *r,short ovalWidth,short ovalHeight,const Pattern *pat);
void FillCRoundRect(const Rect *r,short ovalWidth,short ovalHeight,PixPatHandle pp);
void InvertRoundRect(const Rect *r,short ovalWidth,short ovalHeight);
void EraseRoundRect(const Rect *r,short ovalWidth,short ovalHeight);

Drawing Ovals
void FrameOval(const Rect *r);
void PaintOval(const Rect *r);
void FillOval(const Rect *r,const Pattern *pat);
void FillCOval(const Rect *r,PixPatHandle pp);
void InvertOval(const Rect *r);
void EraseOval(const Rect *r);

Drawing Arcs and Wedges
void FrameArc(const Rect *r,short startAngle,short arcAngle);
void PaintArc(const Rect *r,short startAngle,short arcAngle);
void FillArc(const Rect *r,short startAngle,short arcAngle,const Pattern *pat);
void FillCArc(const Rect *r,short startAngle,short arcAngle,PixPatHandle pp);
void InvertArc(const Rect *r,short startAngle,short arcAngle);
void EraseArc(const Rect *r,short startAngle,short arcAngle);

Drawing and Painting Polygons
void FramePoly(PolyHandle poly);
void PaintPoly(PolyHandle poly);
void FillPoly(PolyHandle poly,const Pattern *pat);
void FillCPoly(PolyHandle poly,PixPatHandle pp);
void InvertPoly(PolyHandle poly);
void ErasePoly(PolyHandle poly);

Drawing Regions
void FrameRgn(RgnHandle rgn);
void PaintRgn(RgnHandle rgn);
void FillCRgn(RgnHandle rgn,PixPatHandle pp);
void EraseRgn(RgnHandle rgn);
void InvertRgn(RgnHandle rgn);
void FillRgn(RgnHandle rgn, const Pattern *pat);

Setting Text Characteristics
void TextFont(short font);
void TextFace(short face);
void TextMode(short mode);
void TextSize(short size);
void SpaceExtra(Fixed extra);
void GetFontInfo(FontInfo *info);

Drawing and Measuring Text
void DrawChar(short ch);
void DrawString(ConstStr255Param s);
void DrawText(const void *textBuf,short firstByte,short byteCount);
short CharWidth(short ch);
short StringWidth(ConstStr255Param s);

Copying Images
void CopyBits(const BitMap *srcBits,const BitMap *dstBits,const Rect *srcRect,
 const Rect *dstRect,short mode,RgnHandle maskRgn);
void CopyMask(const BitMap *srcBits,const BitMap *maskBits,const BitMap *dstBits,
 const Rect *srcRect,const Rect *maskRect,const Rect *dstRect);
void CopyDeepMask(const BitMap *srcBits,const BitMap *maskBits,const BitMap *dstBits,
 const Rect *srcRect,const Rect *maskRect,const Rect *dstRect,short mode,
 RgnHandle maskRgn);

Getting and Setting the Highlight Colour and HighLight Mode
void HiliteColor(const RGBColor *color);
void LMGetHiliteRGB(RGBColor *hiliteRGBValue);
void LMSetHiliteRGB(const RGBColor *hiliteRGBValue);
UInt8 LMGetHiliteMode(void);
void LMSetHiliteMode(UInt8 value);

12-18 Version 1.0 Drawing With QuickDraw

Creating and Disposing of Colour Tables
CtabHandle GetCTable(short ctID);
void DisposeCTable(CTabHandle cTable);

Creating and Managing Polygons
PolyHandle OpenPoly(void);
void ClosePoly(void);
void KillPoly(PolyHandle poly);
void OffsetPoly(PolyHandle poly,short dh,short dv);

Creating and Managing Rectangles
void SetRect(Rect *r,short left,short top,short right,short bottom);
void OffsetRect(Rect *r,short dh,short dv);
void InsetRect(Rect *r,short dh,short dv);
Boolean SectRect(const Rect *src1,const Rect *src2,Rect *dstRect);
void UnionRect(const Rect *src1,const Rect *src2,Rect *dstRect);
Boolean PtInRect(Point pt,const Rect *r);
void Pt2Rect(Point pt1,Point pt2,Rect *dstRect);
void PtToAngle(const Rect *r,Point pt,short *angle);
Boolean EqualRect(const Rect *rect1,const Rect *rect2);
Boolean EmptyRect(const Rect *r);

Creating and Managing Regions
RgnHandle NewRgn(void);
void OpenRgn(void);
void CloseRgn(RgnHandle dstRgn);
void DisposeRgn(RgnHandle rgn);
void CopyRgn(RgnHandle srcRgn,RgnHandle dstRgn);
void SetEmptyRgn(RgnHandle rgn);
void SetRectRgn(RgnHandle rgn,short left,short top,short right,short bottom);
void RectRgn(RgnHandle rgn,const Rect *r);
void OffsetRgn(RgnHandle rgn,short dh,short dv);
void InsetRgn(RgnHandle rgn,short dh,short dv);
void SectRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
void UnionRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
void DiffRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
void XorRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
Boolean PtInRgn(Point pt,RgnHandle rgn);
Boolean RectInRgn(const Rect *r,RgnHandle rgn);
Boolean EqualRgn(RgnHandle rgnA,RgnHandle rgnB);
Boolean EmptyRgn(RgnHandle rgn);
OSErr BitMapToRegion(RgnHandle region,const BitMap *bMap);

Scaling and Mapping Points, Rectangles, Polygons, and Regions
void ScalePt(Point *pt,const Rect *srcRect,const Rect *dstRect);
void MapPt(Point *pt,const Rect *srcRect,const Rect *dstRect);
void MapRect(Rect *r,const Rect *srcRect,const Rect *dstRect);
void MapRgn(RgnHandle rgn,const Rect *srcRect,const Rect *dstRect);
void MapPoly(PolyHandle poly,const Rect *srcRect,const Rect *dstRect);

Determining Whether QuickDraw has Finished Drawing
Boolean QDDone(GrafPtr port);

Retrieving Color QuickDraw Result Codes
short QDError(void);

Managing Port Rectangles and Clipping Regions
void ScrollRect(const Rect *r,short dh,short dv,RgnHandle updateRgn);
void SetOrigin(short h,short v);
void PortSize(short width,short height);
void MovePortTo(short leftGlobal,short topGlobal);
void GetClip(RgnHandle rgn);
void SetClip(RgnHandle rgn);
void ClipRect(const Rect *r);

Manipulating Points in Graphics Ports
void GlobalToLocal(Point *pt);
void LocalToGlobal(Point *pt);
void AddPt(Point src,Point *dst);
void SubPt(Point *src,Point *dst);
void SetPt(Point *pt,short h,short v);
Boolean EqualPt(Point pt1,Point pt2);
Boolean GetPixel(short h,short v);

Drawing With QuickDraw Version 1.0 12-19

Relevant Appearance Manager Data Types and
Functions

Data Types
typedef struct OpaqueThemeDrawingState *ThemeDrawingState;

Functions
OSStatus NormalizeThemeDrawingState(void);
OSStatus GetThemeDrawingState(ThemeDrawingState *outState);
OSStatus SetThemeDrawingState(ThemeDrawingState inState,Boolean inDisposeNow);
OSStatus DisposeThemeDrawingState(ThemeDrawingState inState);

12-20 Version 1.0 Drawing With QuickDraw

Demonstration Program QuickDraw Listing
// ***
// QuickDraw.c CLASSIC EVENT MODEL
// ***
//
// This program opens a window in which the results of various QuickDraw drawing operations
// are displayed. Individual line and text drawing, framing, painting, filling, erasing,
// inverting, copying, etc., operations are chosen from a Demonstration pull-down menu.
//
// To keep the non-QuickDraw code to a minimum, the program contains no functions for
// updating the window or for responding to activate and operating system events.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • 'WIND' resources for the main window, and a small window used for the CopyBits
// demonstration (purgeable) (initially visible).
//
// • An 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).
//
// • Two 'ICON' resources (purgeable) used for the boolean source modes demonstration.
//
// • Two 'PICT' resources (purgeable) used in the arithmetic source modes demonstration.
//
// • 'STR#' resources (purgeable) containing strings used in the source modes and text
// drawing demonstrations.
//
// • Three 'ppat' resources (purgeable), two of which are used in various drawing,
// framing, painting, filling, and erasing demonstrations. The third is used in the
// drawing with mouse demonstration.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

//
………
………………………………………………… includes

#include <Carbon.h>

//
………
…………………………………………………… defines

#define rMenubar 128
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iQuit 12
#define mDemonstration 131
#define iLine 1
#define iFrameAndPaint 2
#define iFillEraseInvert 3
#define iPolygonRegion 4
#define iText 5
#define iScrolling 6
#define iBooleanSourceModes 7
#define iArithmeticSourceModes 8
#define iHighlighting 9
#define iDrawWithMouse 10
#define iDrawingState 11
#define rWindow 128
#define rPixelPattern1 128
#define rPixelPattern2 129
#define rPixelPattern3 130
#define rDestinationIcon 128
#define rSourceIcon 129
#define rFontsStringList 128
#define rBooleanStringList 129
#define rArithmeticStringList 130
#define rPicture 128
#define MAX_UINT32 0xFFFFFFFF

Drawing With QuickDraw Version 1.0 12-21

//
………
…………………………… global variables

Boolean gRunningOnX = false;
Boolean gDone;
WindowRef gWindowRef;
Boolean gDrawWithMouseActivated;
SInt16 gPixelDepth;
Boolean gIsColourDevice = false;
RGBColor gWhiteColour = { 0xFFFF, 0xFFFF, 0xFFFF };
RGBColor gBlackColour = { 0x0000, 0x0000, 0x0000 };
RGBColor gRedColour = { 0xAAAA, 0x0000, 0x0000 };
RGBColor gYellowColour = { 0xFFFF, 0xCCCC, 0x0000 };
RGBColor gGreenColour = { 0x0000, 0x9999, 0x0000 };
RGBColor gBlueColour = { 0x6666, 0x6666, 0x9999 };

//
………
…………………… function prototypes

void main (void);
void doPreliminaries (void);
OSErr quitAppEventHandler (AppleEvent *,AppleEvent *,SInt32);
void doEvents (EventRecord *);
void doDemonstrationMenu (MenuItemIndex);
void doLines (void);
void doFrameAndPaint (void);
void doFillEraseInvert (void);
void doPolygonAndRegion (void);
void doScrolling (void);
void doText (void);
void doBooleanSourceModes (void);
void doArithmeticSourceModes (void);
void doHighlighting (void);
void doDrawWithMouse (void);
void doDrawingState (void);
void doDrawingStateProof (SInt16);
void doGetDepthAndDevice (void);
UInt16 doRandomNumber (UInt16,UInt16);

// ** main

void main(void)
{
 UInt32 seconds;
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 EventRecord eventStructure;
 Boolean gotEvent;

 //
………
………………………… do prelimiaries

 doPreliminaries();

 // ……
seed random number generator

 GetDateTime(&seconds);
 SetQDGlobalsRandomSeed(seconds);

 //
………
set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 ExitToShell();
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)

12-22 Version 1.0 Drawing With QuickDraw

 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }

 gRunningOnX = true;
 }

 //
………
…………………………………… open window

 if(!(gWindowRef = GetNewCWindow(rWindow,NULL,(WindowRef)-1)))
 ExitToShell();

 SetPortWindowPort(gWindowRef);
 UseThemeFont(kThemeSmallSystemFont,smSystemScript);

 // ……………… get pixel depth and whether colour device for certain Appearance Manager functions

 doGetDepthAndDevice();

 //
………
………………………………………… eventLoop

 gDone = false;

 while(!gDone)
 {
 gotEvent = WaitNextEvent(everyEvent,&eventStructure,MAX_UINT32,NULL);
 if(gotEvent)
 doEvents(&eventStructure);
 }
}

// *** doPreliminaries

void doPreliminaries(void)
{
 OSErr osError;

 MoreMasterPointers(32);
 InitCursor();
 FlushEvents(everyEvent,0);

 osError = AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,
 NewAEEventHandlerUPP((AEEventHandlerProcPtr) quitAppEventHandler),
 0L,false);
 if(osError != noErr)
 ExitToShell();
}

// ** doQuitAppEvent

OSErr quitAppEventHandler(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)
{
 OSErr osError;
 DescType returnedType;
 Size actualSize;

 osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,NULL,0,
 &actualSize);

 if(osError == errAEDescNotFound)
 {
 gDone = true;
 osError = noErr;
 }
 else if(osError == noErr)
 osError = errAEParamMissed;

 return osError;
}

// ** doEvents

void doEvents(EventRecord *eventStrucPtr)

Drawing With QuickDraw Version 1.0 12-23

{
 SInt32 menuChoice;
 MenuID menuID;
 MenuItemIndex menuItem;
 WindowPartCode partCode;
 WindowRef windowRef;

 switch(eventStrucPtr->what)
 {
 case kHighLevelEvent:
 AEProcessAppleEvent(eventStrucPtr);
 break;

 case keyDown:
 if((eventStrucPtr->modifiers & cmdKey) != 0)
 {
 menuChoice = MenuEvent(eventStrucPtr);
 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);
 if(menuID == mFile && menuItem == iQuit)
 gDone = true;
 }
 break;

 case mouseDown:
 if(partCode = FindWindow(eventStrucPtr->where,&windowRef))
 {
 switch(partCode)
 {
 case inMenuBar:
 menuChoice = MenuSelect(eventStrucPtr->where);
 menuID = HiWord(menuChoice);
 menuItem = LoWord(menuChoice);

 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 break;

 case mFile:
 if(menuItem == iQuit)
 gDone = true;
 break;

 case mDemonstration:
 doDemonstrationMenu(menuItem);
 break;
 }
 break;

 case inDrag:
 DragWindow(windowRef,eventStrucPtr->where,NULL);
 break;

 case inContent:
 if(windowRef != FrontWindow())
 SelectWindow(windowRef);
 else
 if(gDrawWithMouseActivated)
 doDrawWithMouse();
 break;
 }
 }
 break;

 case updateEvt:
 windowRef = (WindowRef) eventStrucPtr->message;
 BeginUpdate(windowRef);
 EndUpdate(windowRef);
 break;
 }
}

// *** doDemonstrationMenu

12-24 Version 1.0 Drawing With QuickDraw

void doDemonstrationMenu(MenuItemIndex menuItem)
{
 Rect portRect;
 Pattern whitePattern;

 gDrawWithMouseActivated = false;

 switch(menuItem)
 {
 case iLine:
 doLines();
 break;

 case iFrameAndPaint:
 doFrameAndPaint();
 break;

 case iFillEraseInvert:
 doFillEraseInvert();
 break;

 case iPolygonRegion:
 doPolygonAndRegion();
 break;

 case iText:
 doText();
 break;

 case iScrolling:
 doScrolling();
 break;

 case iBooleanSourceModes:
 doBooleanSourceModes();
 break;

 case iArithmeticSourceModes:
 doArithmeticSourceModes();
 break;

 case iHighlighting:
 doHighlighting();
 break;

 case iDrawWithMouse:
 SetWTitle(gWindowRef,"\pDrawing with the mouse");
 RGBBackColor(&gWhiteColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));
 gDrawWithMouseActivated = true;
 break;

 case iDrawingState:
 doDrawingState();
 break;
 }

 HiliteMenu(0);
}

// *** doLines

void doLines(void)
{
 Rect portRect, newClipRect;
 Pattern whitePattern, systemPattern, blackPattern;
 RgnHandle oldClipRgn;
 SInt16 a, b, c;
 RGBColor theColour;
 UInt32 finalTicks;
 PixPatHandle pixpatHdl;

 PenNormal();

 RGBBackColor(&gBlueColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));

Drawing With QuickDraw Version 1.0 12-25

 newClipRect = portRect;
 InsetRect(&newClipRect,10,10);
 oldClipRgn = NewRgn();
 GetClip(oldClipRgn);
 ClipRect(&newClipRect);

 // …………………………………………………………………………………… lines drawn with foreground colour and black pen pattern

 SetWTitle(gWindowRef,"\pDrawing lines with colours");
 RGBBackColor(&gWhiteColour);
 FillRect(&portRect,&whitePattern);

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 for(a=1;a<60;a++)
 {
 b = doRandomNumber(0,portRect.right - portRect.left);
 c = doRandomNumber(0,portRect.right - portRect.left);

 theColour.red = doRandomNumber(0,65535);
 theColour.green = doRandomNumber(0,65535);
 theColour.blue = doRandomNumber(0,65535);
 RGBForeColor(&theColour);

 PenSize(a * 2,1);

 MoveTo(b,portRect.top);
 LineTo(c,portRect.bottom);

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(2,&finalTicks);
 }

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);

 // ……… lines drawn with system-supplied bit
patterns

 SetWTitle(gWindowRef,"\pClick mouse for more lines");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 while(!Button()) ;
 SetWTitle(gWindowRef,"\pDrawing lines with system-supplied bit patterns");
 FillRect(&portRect,&whitePattern);

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 for(a=1;a<39;a++)
 {
 b = doRandomNumber(0,portRect.bottom - portRect.top);
 c = doRandomNumber(0,portRect.bottom - portRect.top);

 theColour.red = doRandomNumber(0,32767);
 theColour.green = doRandomNumber(0,32767);
 theColour.blue = doRandomNumber(0,32767);
 RGBForeColor(&theColour);

 GetIndPattern(&systemPattern,sysPatListID,a);
 PenPat(&systemPattern);

 PenSize(1, a * 2);

 MoveTo(portRect.left,b);
 LineTo(portRect.right,c);

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(5,&finalTicks);
 }

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);

 // …… lines drawn
with a pixel pattern

 SetWTitle(gWindowRef,"\pClick mouse for more lines");

12-26 Version 1.0 Drawing With QuickDraw

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 while(!Button()) ;
 SetWTitle(gWindowRef,"\pDrawing lines with a pixel pattern");
 FillRect(&portRect,&whitePattern);

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 if(!(pixpatHdl = GetPixPat(rPixelPattern1)))
 ExitToShell();
 PenPixPat(pixpatHdl);

 for(a=1;a<60;a++)
 {
 b = doRandomNumber(0,portRect.right - portRect.left);
 c = doRandomNumber(0,portRect.right - portRect.left);

 PenSize(a * 2,1);

 MoveTo(b,portRect.top);
 LineTo(c,portRect.bottom);

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(5,&finalTicks);
 }

 DisposePixPat(pixpatHdl);

 SetClip(oldClipRgn);
 DisposeRgn(oldClipRgn);

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);

 // …… lines drawn with
pattern mode patXor

 SetWTitle(gWindowRef,"\pClick mouse for more lines");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 while(!Button()) ;
 SetWTitle(gWindowRef,"\pDrawing lines using pattern mode patXor");

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 RGBBackColor(&gRedColour);
 FillRect(&portRect,&whitePattern);

 PenSize(1,1);
 PenPat(GetQDGlobalsBlack(&blackPattern));
 PenMode(patXor);

 InsetRect(&portRect,10,10);

 for(a = portRect.left,b = portRect.right;a < portRect.right + 1;a++,b--)
 {
 MoveTo(a,portRect.top);
 LineTo(b,portRect.bottom);

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 }

 for(a = portRect.bottom,b = portRect.top;b < portRect.bottom + 1;a--,b++)
 {
 MoveTo(portRect.left,a);
 LineTo(portRect.right,b);

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 }

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);
}

// *** doFrameAndPaint

void doFrameAndPaint(void)
{

Drawing With QuickDraw Version 1.0 12-27

 SInt16 a;
 Rect portRect, theRect;
 Pattern whitePattern;
 UInt32 finalTicks;
 Pattern systemPattern;
 PixPatHandle pixpatHdl;

 PenNormal();
 PenSize(30,20);

 for(a=0;a<3;a++)
 {
 RGBBackColor(&gWhiteColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 //
………
……………………………… preparation

 if(a == 0)
 {
 SetWTitle(gWindowRef,"\pFraming and painting with a colour");
 RGBForeColor(&gRedColour); // set foreground colour to red
 }
 else if(a == 1)
 {
 SetWTitle(gWindowRef,"\pFraming and painting with a bit pattern");

 RGBForeColor(&gBlueColour); // set foreground colour to blue
 RGBBackColor(&gYellowColour); // set foreground colour to yellow
 GetIndPattern(&systemPattern,sysPatListID,16); // get bit pattern for pen
 PenPat(&systemPattern); // set pen bit pattern
 }
 else if (a == 2)
 {
 SetWTitle(gWindowRef,"\pFraming and painting with a pixel pattern");

 if(!(pixpatHdl = GetPixPat(rPixelPattern1))) // get pixel pattern for pen
 ExitToShell();
 PenPixPat(pixpatHdl); // set pen pixel pattern
 }

 //
………
……… framing and painting

 SetRect(&theRect,30,32,151,191);
 FrameRect(&theRect); // FrameRect
 MoveTo(30,29);
 DrawString("\pFrameRect");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 FrameRoundRect(&theRect,30,50); // FrameRoundRect
 MoveTo(170,29);
 DrawString("\pFrameRoundRect");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 FrameOval(&theRect); // FrameOval
 MoveTo(310,29);
 DrawString("\pFrameOval");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 FrameArc(&theRect,330,300); // FrameArc
 MoveTo(450,29);
 DrawString("\pFrameArc");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,-420,186);

12-28 Version 1.0 Drawing With QuickDraw

 PaintRect(&theRect); // PaintRect
 MoveTo(30,214);
 DrawString("\pPaintRect");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 PaintRoundRect(&theRect,30,50); // PaintRoundRect
 MoveTo(170,214);
 DrawString("\pPaintRoundRect");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 PaintOval(&theRect); // PaintOval
 MoveTo(310,214);
 DrawString("\pPaintOval");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 PaintArc(&theRect,330,300); // PaintArc
 MoveTo(450,214);
 DrawString("\pPaintArc");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);

 if(a < 2)
 {
 SetWTitle(gWindowRef,"\pClick mouse for more");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 while(!Button()) ;
 }
 }

 DisposePixPat(pixpatHdl);
}

// *** doFillEraseInvert

void doFillEraseInvert(void)
{
 SInt16 a;
 Rect portRect, theRect;
 Pattern whitePattern, fillPat, backPat;
 PixPatHandle fillPixpatHdl, backPixpatHdl;
 UInt32 finalTicks;

 PenNormal();
 PenSize(30,20);

 for(a=0;a<4;a++)
 {
 if(a < 3)
 {
 RGBBackColor(&gWhiteColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));
 }

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 //
………
……………………………… preparation

 if(a == 0)
 {
 SetWTitle(gWindowRef,"\pFilling and erasing with colours");

 RGBForeColor(&gBlueColour); // set blue colour for foreground
 RGBBackColor(&gRedColour); // set red colour for background
 GetIndPattern(&fillPat,sysPatListID,1); // get black bit pattern for fill functions
 BackPat(&whitePattern); // set white bit pattern for background
 }

Drawing With QuickDraw Version 1.0 12-29

 else if(a == 1)
 {
 SetWTitle(gWindowRef,"\pFilling and erasing with bit patterns");

 RGBForeColor(&gBlueColour); // set blue colour for foreground
 RGBBackColor(&gYellowColour); // set yellow colour for background
 GetIndPattern(&fillPat,sysPatListID,37); // get bit pattern for fill functions
 GetIndPattern(&backPat,sysPatListID,19); // get bit pattern for background
 BackPat(&backPat); // set bit pattern for background
 }
 else if (a == 2)
 {
 SetWTitle(gWindowRef,"\pFilling and erasing with pixel patterns");

 if(!(fillPixpatHdl = GetPixPat(rPixelPattern1))) // get pixel patt - fill functions
 ExitToShell();
 if(!(backPixpatHdl = GetPixPat(rPixelPattern2))) // get pixel pattern - background
 ExitToShell();
 BackPixPat(backPixpatHdl); // set pixel pattern - background
 }
 else if(a == 3)
 {
 SetWTitle(gWindowRef,"\pInverting");

 BackPat(&whitePattern);
 SetRect(&theRect,30,15,570,29);
 EraseRect(&theRect);
 SetRect(&theRect,30,200,570,214);
 EraseRect(&theRect);
 }

 // ……… filling,
erasing, and inverting

 SetRect(&theRect,30,32,151,191);
 MoveTo(30,29);
 if(a < 2)
 {
 FillRect(&theRect,&fillPat); // FillRect
 DrawString("\pFillRect");
 }
 else if(a == 2)
 {
 FillCRect(&theRect,fillPixpatHdl); // FillCRect
 DrawString("\pFillCRect");
 }
 else if(a == 3)
 {
 InvertRect(&theRect); // InvertRect
 DrawString("\pInvertRect");
 }
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 MoveTo(170,29);
 if(a < 2)
 {
 FillRoundRect(&theRect,30,50,&fillPat); // FillRoundRect
 DrawString("\pFillRoundRect");
 }
 else if(a == 2)
 {
 FillCRoundRect(&theRect,30,50,fillPixpatHdl); // FillCRoundRect
 DrawString("\pFillCRoundRect");
 }
 else if(a == 3)
 {
 InvertRoundRect(&theRect,30,50); // InvertRoundRect
 DrawString("\pInvertRoundRect");
 }
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 MoveTo(310,29);
 if(a < 2)
 {
 FillOval(&theRect,&fillPat); // FillOval

12-30 Version 1.0 Drawing With QuickDraw

 DrawString("\pFillOval");
 }
 else if(a == 2)
 {
 FillCOval(&theRect,fillPixpatHdl); // FillCOval
 DrawString("\pFillCOval");
 }
 else if(a == 3)
 {
 InvertOval(&theRect); // InvertOval
 DrawString("\pInvertOval");
 }
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 MoveTo(450,29);
 if(a < 2)
 {
 FillArc(&theRect,330,300,&fillPat); // FillArc
 DrawString("\pFillArc");
 }
 else if(a == 2)
 {
 FillCArc(&theRect,330,300,fillPixpatHdl); // FillCArc
 DrawString("\pFillCArc");
 }
 else if(a == 3)
 {
 InvertArc(&theRect,330,300); // InvertArc
 DrawString("\pInvertArc");
 }
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,-420,186);
 MoveTo(30,214);
 if(a < 3)
 {
 EraseRect(&theRect); // EraseRect
 DrawString("\pEraseRect");
 }
 else
 {
 InvertRect(&theRect); // InvertRect
 DrawString("\pInvertRect");
 }
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 MoveTo(170,214);
 if(a < 3)
 {
 EraseRoundRect(&theRect,30,50); // EraseRoundRect
 DrawString("\pEraseRoundRect");
 }
 else
 {
 InvertRoundRect(&theRect,30,50); // InvertRoundRect
 DrawString("\pInvertRoundRect");
 }
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRect(&theRect,140,0);
 MoveTo(310,214);
 if(a < 3)
 {
 EraseOval(&theRect); // EraseOval
 DrawString("\pEraseOval");
 }
 else
 {
 InvertOval(&theRect); // InvertOval
 DrawString("\pInvertOval");
 }
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

Drawing With QuickDraw Version 1.0 12-31

 OffsetRect(&theRect,140,0);
 MoveTo(450,214);
 if(a < 3)
 {
 EraseArc(&theRect,330,300); // EraseArc
 DrawString("\pEraseArc");
 }
 else
 {
 InvertArc(&theRect,330,300); // InvertArc
 DrawString("\pInvertArc");
 }
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);

 if(a < 3)
 {
 SetWTitle(gWindowRef,"\pClick mouse for more");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 while(!Button()) ;
 }
 }

 DisposePixPat(fillPixpatHdl);
 DisposePixPat(backPixpatHdl);
}

// ** doPolygonAndRegion

void doPolygonAndRegion(void)
{
 Rect portRect, theRect;
 Pattern whitePattern, backPat;
 PixPatHandle fillPixpatHdl;
 PolyHandle polygonHdl;
 RgnHandle regionHdl;
 UInt32 finalTicks;

 SetWTitle(gWindowRef,"\pFraming, painting, filling, and erasing polygons and regions");

 RGBBackColor(&gWhiteColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 //
………
…………………………………… preparation

 GetIndPattern(&backPat,sysPatListID,17); // get bit pattern for background
 BackPat(&backPat); // set bit pattern for background
 if(!(fillPixpatHdl = GetPixPat(rPixelPattern2))) // get pixel pattern for fill functions
 ExitToShell();
 RGBForeColor(&gRedColour); // set red colour for foreground
 RGBBackColor(&gYellowColour); // set yellow colour for background
 PenNormal();

 polygonHdl = OpenPoly(); // define polygon
 MoveTo(30,32);
 LineTo(151,32);
 LineTo(96,103);
 LineTo(151,134);
 LineTo(151,191);
 LineTo(30,191);
 LineTo(66,75);
 ClosePoly();

 regionHdl = NewRgn(); // define region
 OpenRgn();
 SetRect(&theRect,30,218,151,279);
 FrameRect(&theRect);
 SetRect(&theRect,30,316,151,377);
 FrameRect(&theRect);

12-32 Version 1.0 Drawing With QuickDraw

 SetRect(&theRect,39,248,142,341);
 FrameOval(&theRect);
 CloseRgn(regionHdl);

 // ……… framing, painting, filling,
and erasing

 FramePoly(polygonHdl); // FramePoly
 MoveTo(30,29);
 DrawString("\pFramePoly (colour)");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetPoly(polygonHdl,140,0);
 PaintPoly(polygonHdl); // PaintPoly
 MoveTo(170,29);
 DrawString("\pPaintPoly (colour)");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetPoly(polygonHdl,140,0);
 FillCPoly(polygonHdl,fillPixpatHdl); // FillCPoly
 MoveTo(310,29);
 DrawString("\pFillCPoly (pixel pattern)");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetPoly(polygonHdl,140,0);
 ErasePoly(polygonHdl); // ErasePoly
 MoveTo(450,29);
 DrawString("\pErasePoly (bit pattern)");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 FrameRgn(regionHdl); // FrameRgn
 MoveTo(30,214);
 DrawString("\pFrameRgn (colour)");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRgn(regionHdl,140,0);
 PaintRgn(regionHdl); // PaintRgn
 MoveTo(170,214);
 DrawString("\pPaintRgn (colour)");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRgn(regionHdl,140,0);
 FillCRgn(regionHdl,fillPixpatHdl); // FillCRgn
 MoveTo(310,214);
 DrawString("\pFillCRgn (pixel pattern)");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 OffsetRgn(regionHdl,140,0);
 EraseRgn(regionHdl); // EraseRgn
 MoveTo(450,214);
 DrawString("\pEraseRgn (bit pattern)");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);

 KillPoly(polygonHdl);
 DisposeRgn(regionHdl);
 DisposePixPat(fillPixpatHdl);
 BackPat(&whitePattern);

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);
}

// ** doText

void doText(void)
{
 Rect portRect, theRect;
 Pattern whitePattern;
 SInt16 windowCentre, a, fontNum, stringWidth;
 Str255 textString;
 UInt32 finalTicks;

Drawing With QuickDraw Version 1.0 12-33

 RGBBackColor(&gWhiteColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));

 SetWTitle(gWindowRef,"\pDrawing text with default source mode (srcOr)");

 windowCentre = (portRect.right - portRect.left) / 2;
 SetRect(&theRect,windowCentre,portRect.top,portRect.right,portRect.bottom);
 RGBBackColor(&gBlueColour);
 FillRect(&theRect,&whitePattern);

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 for(a=1;a<9;a++)
 {
 // ……………………………………………………………………… set various text fonts, text styles, and foreground colours

 if(a == 1)
 {
 GetFNum("\pGeneva",&fontNum);
 TextFont(fontNum);
 TextFace(normal);
 RGBForeColor(&gRedColour);
 }
 else if(a == 2)
 TextFace(bold);
 else if(a == 3)
 {
 GetFNum("\pTimes",&fontNum);
 TextFont(fontNum);
 TextFace(italic);
 RGBForeColor(&gYellowColour);
 }
 else if(a == 4)
 TextFace(underline);
 else if(a == 5)
 {
 GetFNum("\pHelvetica",&fontNum);
 TextFont(fontNum);
 TextFace(normal);
 RGBForeColor(&gGreenColour);
 }
 else if(a == 6)
 TextFace(bold + italic);
 else if(a == 7)
 {
 GetFNum("\pCharcoal",&fontNum);
 TextFont(fontNum);
 TextFace(condense);
 RGBForeColor(&gBlackColour);
 }
 else if(a == 8)
 {
 TextFace(extend);
 }

 //
………
………………………… set text size

 if(a < 7)
 TextSize(a * 2 + 15);
 else
 TextSize(12);

 // ………………………… get a string and draw it in the set font, style, size, and foreground colour

 GetIndString(textString,rFontsStringList,a);
 stringWidth = StringWidth(textString);
 MoveTo(windowCentre - (stringWidth / 2),a * 46 - 10);
 DrawString(textString);

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(30,&finalTicks);
 }

12-34 Version 1.0 Drawing With QuickDraw

 // ………
reset to Geneva 10pt normal

 GetFNum("\pGeneva",&fontNum);
 TextFont(fontNum);
 TextSize(10);
 TextFace(normal);

 // ……………………………… erase a rectangle, get a string, and use TETextBox to draw it left justified

 SetRect(&theRect,portRect.left + 5,portRect.bottom - 55,portRect.left + 118,
 portRect.bottom - 5);
 EraseRect(&theRect);
 InsetRect(&theRect,5,5);
 GetIndString(textString,rFontsStringList,9);
 RGBForeColor(&gWhiteColour);
 TETextBox(&textString[1],textString[0],&theRect,teFlushLeft);

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);
}

// *** doScrolling

void doScrolling(void)
{
 Rect portRect, theRect;
 Pattern whitePattern;
 PixPatHandle pixpat1Hdl, pixpat2Hdl;
 RgnHandle oldClipHdl, regionAHdl, regionBHdl, regionCHdl, scrollRegionHdl;
 SInt16 a;
 UInt32 finalTicks;

 SetWTitle(gWindowRef,"\pScrolling pixels");

 RGBBackColor(&gWhiteColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 if(!(pixpat1Hdl = GetPixPat(rPixelPattern1)))
 ExitToShell();
 PenPixPat(pixpat1Hdl);
 PenSize(50,0);
 SetRect(&theRect,30,30,286,371);
 FrameRect(&theRect);
 SetRect(&theRect,315,30,571,371);
 FillCRect(&theRect,pixpat1Hdl);

 if(!(pixpat2Hdl = GetPixPat(rPixelPattern2)))
 ExitToShell();
 BackPixPat(pixpat2Hdl);

 regionAHdl = NewRgn();
 regionBHdl = NewRgn();
 regionCHdl = NewRgn();
 SetRect(&theRect,80,30,236,371);
 RectRgn(regionAHdl,&theRect);
 SetRect(&theRect,315,30,571,371);
 RectRgn(regionBHdl,&theRect);
 UnionRgn(regionAHdl,regionBHdl,regionCHdl);

 oldClipHdl = NewRgn();
 GetClip(oldClipHdl);
 SetClip(regionCHdl);

 SetRect(&theRect,80,30,571,371);

 scrollRegionHdl = NewRgn();

 for(a=0;a<371;a++)
 {
 ScrollRect(&theRect,0,1,scrollRegionHdl);
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 theRect.top ++;
 Delay(1,&finalTicks);
 }

Drawing With QuickDraw Version 1.0 12-35

 SetRect(&theRect,80,30,571,371);
 BackPixPat(pixpat1Hdl);

 for(a=0;a<371;a++)
 {
 ScrollRect(&theRect,0,-1,scrollRegionHdl);
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 theRect.bottom --;
 Delay(1,&finalTicks);
 }

 SetClip(oldClipHdl);

 DisposePixPat(pixpat1Hdl);
 DisposePixPat(pixpat2Hdl);
 DisposeRgn(oldClipHdl);
 DisposeRgn(regionAHdl);
 DisposeRgn(regionBHdl);
 DisposeRgn(regionCHdl);
 DisposeRgn(scrollRegionHdl);

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);
}

// ** doBooleanSourceModes

void doBooleanSourceModes(void)
{
 Rect portRect, theRect;
 Pattern whitePattern;
 Handle destIconHdl, sourceIconHdl;
 SInt16 a, b;
 UInt32 finalTicks;
 BitMap sourceIconMap;
 Str255 sourceString;
 PixMapHandle destinationPixMapHdl;

 SetWTitle(gWindowRef,"\pBoolean source modes");

 RGBForeColor(&gBlackColour);
 RGBBackColor(&gGreenColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));
 SetRect(&theRect,portRect.left,portRect.top,portRect.right,
 (portRect.bottom - portRect.top) / 2);
 RGBBackColor(&gWhiteColour);
 FillRect(&theRect,&whitePattern);

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 destIconHdl = GetIcon(rDestinationIcon);
 sourceIconHdl = GetIcon(rSourceIcon);

 for(a=0;a<2;a++)
 {
 if(a == 1)
 {
 RGBForeColor(&gYellowColour);
 RGBBackColor(&gRedColour);
 }

 SetRect(&theRect,235,a * 191 + 30,299,a * 191 + 94);
 PlotIcon(&theRect,destIconHdl);
 MoveTo(235,a * 191 + 27);
 DrawString("\pDestination");

 SetRect(&theRect,304,a * 191 + 30,368,a * 191 + 94);
 PlotIcon(&theRect,sourceIconHdl);
 MoveTo(304,a * 191 + 27);
 DrawString("\pSource");
 }

 RGBForeColor(&gBlackColour);
 RGBBackColor(&gWhiteColour);

 for(a=0;a<2;a++)

12-36 Version 1.0 Drawing With QuickDraw

 {
 if(a == 1)
 {
 RGBForeColor(&gYellowColour);
 RGBBackColor(&gRedColour);
 }

 for(b=0;b<8;b++)
 {
 SetRect(&theRect,b * 69 + 28,a * 191 + 121,b * 69 + 92,a * 191 + 185);
 PlotIcon(&theRect,destIconHdl);
 }
 }

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);

 RGBForeColor(&gBlackColour);
 RGBBackColor(&gWhiteColour);

 HLock(sourceIconHdl);
 sourceIconMap.baseAddr = *sourceIconHdl;
 sourceIconMap.rowBytes = 4;
 SetRect(&sourceIconMap.bounds,0,0,32,32);

 destinationPixMapHdl = GetPortPixMap(GetQDGlobalsThePort());

 for(a=0;a<2;a++)
 {
 if(a == 1)
 {
 RGBForeColor(&gYellowColour);
 RGBBackColor(&gRedColour);
 }

 for(b=0;b<8;b++)
 {
 Delay(30,&finalTicks);
 SetRect(&theRect,b * 69 + 28,a * 191 + 121,b * 69 + 92,a * 191 + 185);
 CopyBits(&sourceIconMap,
 (BitMap *) *destinationPixMapHdl,
 &sourceIconMap.bounds,
 &theRect,
 b,NULL);
 GetIndString(sourceString,rBooleanStringList,b + 1);
 MoveTo(b * 69 + 28,a * 191 + 118);
 DrawString(sourceString);

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 }
 }

 HUnlock(sourceIconHdl);

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);
}

// *** doArithmeticSourceModes

void doArithmeticSourceModes(void)
{
 Rect portRect, sourceRect, destRect;
 Pattern whitePattern;
 PicHandle sourceHdl, destinationHdl;
 SInt16 a, b, arithmeticMode = 32;
 PixMapHandle currentPixMapHdl;
 Str255 modeString;
 UInt32 finalTicks;

 SetWTitle(gWindowRef,"\pCopyBits with arithmetic source modes");

 RGBForeColor(&gBlackColour);
 RGBBackColor(&gWhiteColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

Drawing With QuickDraw Version 1.0 12-37

 if(!(sourceHdl = GetPicture(rPicture)))
 ExitToShell();
 SetRect(&sourceRect,44,21,201,133);
 HNoPurge((Handle) sourceHdl);
 DrawPicture(sourceHdl,&sourceRect);
 HPurge((Handle) sourceHdl);
 MoveTo(44,19);
 DrawString("\pSOURCE IMAGE");

 if(!(destinationHdl = GetPicture(rPicture + 1)))
 ExitToShell();
 HNoPurge((Handle) destinationHdl);
 for(a=44;a<403;a+=179)
 {
 for(b=21;b<274;b+=126)
 {
 if(a == 44 && b == 21)
 continue;
 SetRect(&destRect,a,b,a+157,b+112);
 DrawPicture(destinationHdl,&destRect);
 }
 }
 HPurge((Handle) destinationHdl);

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);

 currentPixMapHdl = GetPortPixMap(GetWindowPort(gWindowRef));

 for(a=44;a<403;a+=179)
 {
 for(b=21;b<274;b+=126)
 {
 if(a == 44 && b == 21)
 continue;

 Delay(60,&finalTicks);

 GetIndString(modeString,rArithmeticStringList,arithmeticMode - 31);
 MoveTo(a,b - 2);
 DrawString(modeString);

 SetRect(&destRect,a,b,a+157,b+112);

 CopyBits((BitMap *) *currentPixMapHdl,
 (BitMap *) *currentPixMapHdl,
 &sourceRect,&destRect,
 arithmeticMode + ditherCopy,NULL);

 arithmeticMode ++;

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 }

 }

 ReleaseResource((Handle) sourceHdl);
 ReleaseResource((Handle) destinationHdl);

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);
}

// ** doHighlighting

void doHighlighting(void)
{
 Rect portRect, theRect;
 Pattern whitePattern;
 RGBColor oldHighlightColour;
 SInt16 a;
 UInt8 hiliteVal;
 UInt32 finalTicks;

 SetWTitle(gWindowRef,"\pHighlighting");

 RGBForeColor(&gBlackColour);
 RGBBackColor(&gWhiteColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));

12-38 Version 1.0 Drawing With QuickDraw

 LMGetHiliteRGB(&oldHighlightColour);

 for(a=0;a<3;a++)
 {
 MoveTo(50,a * 100 + 60);
 DrawString("\pClearing the highlight bit and calling InvertRect.");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(60,&finalTicks);
 SetRect(&theRect,44,a * 100 + 44,557,a * 100 + 104);

 hiliteVal = LMGetHiliteMode();
 BitClr(&hiliteVal,pHiliteBit);
 LMSetHiliteMode(hiliteVal);

 if(a == 1)
 HiliteColor(&gYellowColour);
 else if(a == 2)
 HiliteColor(&gGreenColour);

 InvertRect(&theRect);
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);

 MoveTo(50,a * 100 + 75);
 Delay(60,&finalTicks);
 DrawString("\pClick mouse to unhighlight. ");
 DrawString("\p(Note: The call to InvertRect reset the highlight bit ...");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);

 while(!Button()) ;

 MoveTo(45,a * 100 + 90);
 DrawString("\p... so we clear the highlight bit again before calling InvertRect.)");
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 Delay(60,&finalTicks);

 LMSetHiliteMode(hiliteVal);

 InvertRect(&theRect);
 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
 }

 HiliteColor(&oldHighlightColour);

 Delay(60,&finalTicks);
 MoveTo(50,350);
 DrawString("\pOriginal highlight colour has been reset.");

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
}

// *** doDrawWithMouse

void doDrawWithMouse(void)
{
 Rect portRect, drawRect;
 Pattern whitePattern, blackPattern;
 PixPatHandle pixpatHdl;
 Point initialMouse, previousMouse, currentMouse;
 UInt16 randomNumber;
 RGBColor theColour;

 RGBBackColor(&gWhiteColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));

 if(!(pixpatHdl = GetPixPat(rPixelPattern3)))
 ExitToShell();
 PenPixPat(pixpatHdl);
 PenSize(1,1);
 PenMode(patXor);

 GetMouse(&initialMouse);
 drawRect.left = drawRect.right = initialMouse.h;
 drawRect.top = drawRect.bottom = initialMouse.v;

 GetMouse(&previousMouse);

 while(StillDown())

Drawing With QuickDraw Version 1.0 12-39

 {
 GetMouse(¤tMouse);

 if(currentMouse.v != previousMouse.v || currentMouse.h != previousMouse.h)
 {
 FrameRect(&drawRect);

 if(currentMouse.h >= initialMouse.h)
 drawRect.right = currentMouse.h;
 if(currentMouse.v >= initialMouse.v)
 drawRect.bottom = currentMouse.v;
 if(currentMouse.h <= initialMouse.h)
 drawRect.left = currentMouse.h;
 if(currentMouse.v <= initialMouse.v)
 drawRect.top = currentMouse.v;

 FrameRect(&drawRect);
 }

 previousMouse.v = currentMouse.v;
 previousMouse.h = currentMouse.h;
 }

 FrameRect(&drawRect);

 theColour.red = doRandomNumber(0,65535);
 theColour.green = doRandomNumber(0,65535);
 theColour.blue = doRandomNumber(0,65535);
 RGBForeColor(&theColour);

 PenMode(patCopy);
 PenPat(GetQDGlobalsBlack(&blackPattern));
 BackPixPat(pixpatHdl);

 randomNumber = doRandomNumber(0,3);

 if(randomNumber == 0)
 PaintRect(&drawRect);
 else if(randomNumber == 1)
 EraseRoundRect(&drawRect,50,50);
 else if(randomNumber == 2)
 PaintOval(&drawRect);
 else if(randomNumber == 3)
 PaintArc(&drawRect,0,doRandomNumber(0,360));

 BackPat(&whitePattern);
}

// *** doDrawingState

void doDrawingState(void)
{
 Rect portRect, theRect;
 Pattern whitePattern;
 ThemeDrawingState themeDrawingState;
 SInt16 a;
 UInt32 finalTicks;

 RGBBackColor(&gBlueColour);
 GetWindowPortBounds(gWindowRef,&portRect);
 FillRect(&portRect,GetQDGlobalsWhite(&whitePattern));
 SetWTitle(gWindowRef,"\pSaving and restoring the graphics port drawing state");

 if(!gRunningOnX)
 SetThemeCursor(kThemeWatchCursor);

 NormalizeThemeDrawingState();

 doDrawingStateProof(0);
 Delay(120,&finalTicks);

 GetThemeDrawingState(&themeDrawingState);

 theRect = portRect;
 theRect.right -= 300;

 SetThemeBackground(kThemeBrushListViewBackground,gPixelDepth,gIsColourDevice);
 EraseRect(&theRect);

12-40 Version 1.0 Drawing With QuickDraw

 theRect.left += 150;

 SetThemeBackground(kThemeBrushListViewSortColumnBackground,gPixelDepth,gIsColourDevice);
 EraseRect(&theRect);

 SetThemePen(kThemeBrushListViewSeparator,gPixelDepth,gIsColourDevice);

 theRect.left -= 150;
 for(a=theRect.top;a<=theRect.bottom;a+=18)
 {
 MoveTo(theRect.left,a);
 LineTo(theRect.right - 1,a);
 }

 Delay(120,&finalTicks);
 doDrawingStateProof(1);
 Delay(120,&finalTicks);

 SetThemeDrawingState(themeDrawingState,true);

 doDrawingStateProof(2);

 if(!gRunningOnX)
 SetThemeCursor(kThemeArrowCursor);
}

// ** doDrawingStateProof

void doDrawingStateProof(SInt16 phase)
{
 Rect theRect;

 MoveTo(324,phase * 117 + 41);
 if(phase == 0)
 DrawString("\pBefore calls to SetThemePen and SetThemeBackground");
 else if(phase == 1)
 DrawString("\pAfter calls to SetThemePen and SetThemeBackground");
 else if(phase == 2)
 DrawString("\pAfter restoration of graphics port drawing state");

 MoveTo(324,phase * 117 + 54);
 DrawString("\pPen pattern/colour");
 MoveTo(462,phase * 117 + 54);
 DrawString("\pBackgrd pattern/colour");

 SetRect(&theRect,324,phase * 117 + 58,438,phase * 117 + 132);
 PaintRect(&theRect);
 SetRect(&theRect,462,phase * 117 + 58,576,phase * 117 + 132);
 EraseRect(&theRect);

 QDFlushPortBuffer(GetWindowPort(FrontWindow()),NULL);
}

// *** doGetDepthAndDevice

void doGetDepthAndDevice(void)
{
 GDHandle deviceHdl;

 deviceHdl = GetMainDevice();
 gPixelDepth = (*(*deviceHdl)->gdPMap)->pixelSize;
 if(((1 << gdDevType) & (*deviceHdl)->gdFlags) != 0)
 gIsColourDevice = true;
}

// ** doRandomNumber

UInt16 doRandomNumber(UInt16 minimum,UInt16 maximum)
{
 UInt16 randomNumber;
 SInt32 range, t;

 randomNumber = Random();
 range = maximum - minimum + 1;
 t = (randomNumber * range) / 65536;
 return (t + minimum);
}

// ***

Drawing With QuickDraw Version 1.0 12-41

Demonstration Program QuickDraw Comments
When this program is run, the user should choose items from the Demonstration menu and click the mouse button when
instructed to do so by the advisory text in the window's title bar.

defines
In addition to the usual constants relating to menus and the window, constants are established for pixel pattern, icon, string
list, and picture resource IDs.

Global Variables
The fields of the RGBColor global variables are assigned values representing the colours described by the variable names.

main
Random numbers are used by various functions in the demonstration. The call to SetQDGlobalsRandomSeed seeds the
random number generator. randSeed is a QuickDraw global variable which holds the seed value for the random number
generator. Unless randSeed is modified, the same sequence of numbers will be generated each time the program is run. The
parameter to the GetDateTime call receives the number of seconds since midnight, January 1, 1904, a value that is bound to
be different each time the program is run.

Note that error handling in main(), as in other areas of the program, is somewhat rudimentary in that the program simply
terminates.

doEvents
Within the mouseDown case, at the inContent case, if the mouseDown is within the content region of the window when it is
the front window and gDrawWithMouseActivated is true, the function doDrawWithMouse is called.

doDemonstrationMenu
doDemonstrationMenu switches according to the user's choices in the Demonstration menu. In all but the iDrawWithMouse
case, the only action taken is to call the relevant function.

Note that the global variable gDrawWithMouseActivated is set to false at function entry, and is set to true within the
iDrawWithMouse case (which executes if the user chooses the Draw With Mouse item). Also note that the window's
background is filled with the white colour, using the white pattern, within this case.

doLines
doLines demonstrates line drawing using colours, bit patterns, pixel patterns, and with the Boolean pattern mode patXor.
doLines also demonstrates modifying the graphics port's clipping region so as to clip drawing to that modified region.

The first line sets the graphics pen's size, pattern, and pattern mode to the defaults. The next three lines fill the window's
content area with blue.

The next block sets the window's clipping region to a rectangle 10 pixels inside the port rectangle. The first two lines define
such a rectangle. The next two lines save the current clipping region for later restoration. The call to ClipRect establishes the
new clipping region by setting it in the graphics port object.

Lines Drawn With Foreground Colour And Black Pen Pattern
After the window title is set, FillRect is called with the white pattern with the background colour is set to white. This fill is
clipped to the current clipping region, which is a rectangle 10 pixels inside the port rectangle.

Within the for loop, random numbers between 0 and the width of the port rectangle are assigned to two variables which will
be used to specify the starting and finishing horizontal coordinates for each of 60 drawn lines. The fields of an RGBColor
variable are also assigned random values, this time between 0 and 65534 (one less than the maximum possible value for a
UInt16). The call to RGBColor assigns this random colour as the requested foreground colour. The pen width is increased by
two pixels. Finally, the call to MoveTo moves the pen to the random horizontal location at the top of the port rectangle, and
the call to LineTo draws a line to the random horizontal location at the bottom of the port rectangle. The line drawing is
clipped to the current clipping region.

Lines Drawn With System-Supplied Bit Patterns
This line drawing operation is similar to the previous one except that a system-supplied bit pattern is assigned to the graphics
pen and the lines are drawn from left to right rather than top to bottom. The bit patterns are loaded by the call to
GetIndPattern and are drawn from the 38 patterns in the 'PAT#' resource in the System file with resource ID sysPatListID (0).
The call to PenPat assigns the specified bit pattern to the graphics pen. In this operation, the height of the pen, rather than
the width, is increased by two each time around the for loop.

Lines Drawn With A Pixel Pattern
In this line drawing operation, before the for loop is entered, GetPixPat is called to allocate a PixPat structure and initialise it
with information from the specified 'ppat' resource. The call to PenPixPat then assigns this pixel pattern to the graphics pen.

After the last line is drawn, DisposePixPat is called to free the memory allocated by the GetPixPat call.

At this point, the clipping region saved at the start of the function is restored, and all of the memory allocated by the NewRgn
call is freed.

12-42 Version 1.0 Drawing With QuickDraw

Lines Drawn With Pattern Mode patXor
This block demonstrates a well-known but nonetheless exotic capability of the humble line when it operates in the pattern
mode patXor.

The content area is filled with red, following which the pen size and pen pattern are set to the defaults. The call to PenMode
sets the pen mode to patXor The next four lines assign values to four variables which will be used to ensure that the starting
and ending locations of each drawn line will be ten pixels inside the port rectangle. The for loops, proceeding clockwise, draw
lines from points 10 pixels inside the periphery of the port rectangle through the centre of the rectangle to points on the
opposite side of the rectangle. The effect of patXor on any destination pixel is to invert it. For example, assuming a white
background and black pen colour, any white pixel in the path of the drawn lines will be turned black and any black pixel will
be turned white. This produces a pattern known as a moire (watered silk) pattern.

doFrameAndPaint
doFrameAndPaint demonstrates the use of QuickDraw's framing and painting functions with the exception of those relating to
polygons and regions.

At the first two lines, the pen pattern and mode are set to the defaults and the pen size is set to 30 pixels wide and 20 pixels
high.

The for loop is traversed three times, once for framing and painting with a colour, once for framing and painting with a bit
pattern, and once for framing and painting with a pixel pattern. The first action is to fill the port rectangle with the colour
white using the white pattern.

Preparation
The first time around the loop, RGBForeColor is called to set the requested foreground colour to red.

The second time around the loop, RGBForeColor and RGBBackColor are called to set the requested foreground and
background colours to, respectively, blue and yellow, GetIndPattern loads one of the system-supplied bit patterns, and PenPat
makes that pattern the pen's current bit pattern.

The third time around the loop, a call to GetPixPat loads a 'ppat' resource, creating a new PixPat structure, and a call to
PenPixPat assigns that pixel pattern to the pen.

Framing and Painting
In this section, SetRect is used to assign the coordinates of a rectangle to the fields of a Rect structure, and OffsetRect is used
to move the rectangle horizontally and vertically between the calls to the various framing and painting functions.

Before doFrameAndPaint exits, DisposePixPat is called to free the memory allocated by the GetPixPat call.

doFillEraseInvert
doFillEraseInvert demonstrates the use of QuickDraw's filling, erasing, and inverting functions with the exception of those
relating to polygons and regions.

At the first two lines, the pen pattern and mode are set to the defaults and the pen size is set to 30 pixels wide and 20 pixels
high.

The for loop is traversed four times, once for filling and erasing with colours, once for filling and erasing with bit patterns, once
for filling and erasing with a pixel patterns, and once for inverting. The first action, on the first three passes only, is to fill the
port rectangle with the colour white using the white pattern.

Preparation
The first time around the loop, RGBForeColor and RGBBackColor are called to set the requested foreground and background
colours to, respectively, blue and red. In addition, the calls to GetIndPattern and BackPat set the background pattern to black.

The second time around the loop, RGBForeColor and RGBBackColor are called to set the requested foreground and
background colours to, respectively, blue and yellow. In addition, GetIndPattern is called twice, once to assign a bit pattern to
a Pattern variable which will be passed as the second parameter in calls to FillRect, FillOval, etc., and once, in conjunction with
BackPat, to assign a bit pattern to the graphics port's bkPixPat field.

The third time around the loop, GetPixPat is called twice, once to assign a pixel pattern to a the variable which will be passed
as the second parameter in calls to FillCRect, FillCOval, etc., and once, in conjunction with BackPixPat, to assign a pixel
pattern to the graphics port's bkPixPat field.

The fourth time around the loop, and preparatory to calls to the erasing functions, the call to BackPat sets the background
pattern to white. (The calls to SetRect and EraseRect simply erase the existing text in the window.)

Filling, Erasing, and Inverting
In this section, SetRect is used to assign the coordinates of a rectangle to the fields of a Rect structure, and OffsetRect is used
to move the rectangle horizontally and vertically between the calls to the various filling, erasing, and inverting functions.

Before doFillEraseInvert exits, DisposePixPat is called twice to free the memory allocated by the two GetPixPat calls.

doPolygonAndRegion
doPolygonAndRegion demonstrates defining a polygon and a region and the use of some of QuickDraw's polygon and region
framing, painting, filling, and erasing functions.

Drawing With QuickDraw Version 1.0 12-43

Preparation
The calls to GetIndPattern and BackPat set the background pattern to one on the system-supplied bit patterns. The call to
GetPixPat gets the pixel pattern to be used by the filling functions. The calls to RGBForeColor and RGBBackColor set the
requested foreground and background colours. PenNormal sets the pen's size, pattern mode, and pattern to the defaults.

The OpenPoly call initiates the recording of the polygon definition, the MoveTo and LineTo calls define the polygon, and
ClosePoly stops the recording. Note that, in this demonstration, the last vertex is not joined to the first vertex.

The NewRgn call allocates memory for a new region and a region pointer, initialises the contents of the region and make it an
empty rectangle. OpenRgn initiates the recording of a region shape. The next seven lines create a region definition
comprising two rectangles and an overlapping oval. CloseRgn terminates the recording.

Framing, Painting, Filling, And Erasing
In this section, OffsetPoly and OffsetRgn are used to move the polygon and region horizontally between the calls to the
framing, filling, and erasing functions. OffsetPoly modifies the polygon's definition. OffsetRgn adjusts the coordinates of the
region.

Before doPolygonAndRegion exits, KillPoly is called to free all the memory allocated by OpenPoly, DisposeRgn is called to free
all the memory allocated by NewRgn, DisposePixPat is called to free all the memory allocated by GetPixPat, and the
background pattern is set to white.

doText
doText draws text in various fonts, sizes and styles. In addition, the last block demonstrates drawing justified text within a
specified rectangle using the TextEdit function TETextBox.

Prior to the for loop, the variable windowCentre is assigned a value which represents a location midway across the port
rectangle, and the right half of the content area is filled with blue.

Within the first section of the for loop, the text font is changed using GetFNum and TextFont, the text style is changed using
TextFace, and the foreground colour is changed. At the last two sections within the loop, the text size is changed using
TextSize, a string is retrieved from a 'STR#' resource, the width of the string in pixels is determined, and the string is drawn
centred laterally in the window.

After the loop exits, the text font, size and style are returned to Geneva 10pt plain.

At the final block, a small rectangle is defined at the bottom left of the content area. Because the current background colour
is blue, the call to EraseRect erases the rectangle in that colour. The rectangle is then inset by five pixels all round. A string
is then loaded from a 'STR#' resource and the foreground colour is set to white. Finally, TETextBox is called to draw the text
within the specified rectangle with left justification. (Other available justification constants are teFlushRight and teCenter.)

doScrolling
doScrolling demonstrates scrolling pixels within a specified rectangle, with the operation clipped to a region comprising two
unconnected rectangular areas.

The first call to GetPixPat loads a 'ppat' resource. The call to PenPixPat assigns that pixel pattern to the pen, which is then
made 50 pixels wide and zero pixels high. A framed rectangle is then drawn in the left half of the window. (Note that,
because the pen height is set to zero, the two sides of the rectangle will be drawn but not the top and bottom.) A filled
rectangle is then drawn in the right side of the window using the same pixel pattern.

In the next block, another 'ppat' resource is retrieved. The call to BackPixPat makes this pixel pattern the background pixel
pattern.

The next block creates a region comprising two separate rectangles, the first one coincident with the "inside" of the framed
rectangle and the second one coincident with the whole of the filled rectangle). The current clipping region is then saved and
the newly created region is established as the current clipping region.

The following call to SetRect defines a rectangle for the first parameter of the ScrollRect function. Laterally, this extends from
the left inside of the framed rectangle to the right hand side of the filled rectangle. The call to NewRgn then creates the
empty region required by the ScrollRect calls.

In the first for loop, the pixels within the clipping region within the specified rectangle are scrolled downwards, the top of the
rectangle being incremented downwards between calls to ScrollRect. ScrollRect fills the "vacated" areas with the background
pattern .

Between the for loops, the rectangle used by ScrollRect is redefined and the background pixel pattern is changed to the pixel
pattern used to draw the original rectangles. The scrolling operation is then repeated, this time in an upwards direction.

Before doScrolling exits, the saved clipping region is restored and all the memory allocated by the GetPixPat and NewRgn
calls is freed.

doBooleanSourceModes
doBooleanSourceModes demonstrates the effects of the Boolean source modes in both black-and-white and colour.

The first block fills the content area with green and then fills the top half of the content area with white. This block leaves the
foreground colour black and the background colour white.

12-44 Version 1.0 Drawing With QuickDraw

The next block loads two 32 bit by 32 bit 'ICON' resources. One icon contains the image of a cross and the other contains the
image of a square.

The first for loop calls PlotIcon four times, twice to draw the icons in the white area at the top of the window, and twice to
draw them in the green area at the bottom of the window. The rectangle passed in the first parameter of the PlotIcon calls
expands the icon to 64 pixels by 64 pixels. The calls to RGBForeColor and RGBBackColor cause the icons in the green area to
be drawn using a foreground colour of yellow and a background colour of red.

The foreground and background colours are reset to black and white before the second for loop is entered.

The second for loop draws the cross icon eight times across the bottom of the white half of the window. The foreground and
background colours are then changed to yellow and red before this process is repeated across the bottom of the green area of
the window.

The foreground and background colours are again reset to black and white.

As a preamble to what is to come, note that there is no special data type for an icon. It is simply 128 bytes of bit data
arranged as 32 rows of 4 bytes per row. All that is available is a handle to that 128 bytes of data. The intention is to cause
the 128 bytes of data which constitutes the square icon to be regarded as bitmap data pointed to by the baseAddr field of a
BitMap structure. That way, the CopyBits routine can be used to copy the bitmap into the graphics port.

Because CopyBits is one of those functions which can move memory around, the first action is to lock the icon data in the
heap. The address of the square icon image data is then assigned to the baseAddr field of a BitMap structure, the rowBytes
field is assigned the value 4, and the bounds field is assigned a rectangle defining the normal icon size.

The final for loop calls CopyBits to copy the bit image into the graphics port sixteen times, overdrawing the previously drawn
cross icons. The call to SetRect within the inner for loop defines the expanded destination rectangle which governs the size at
which the image will be drawn. This rectangle is passed in the destRect parameter of the CopyBits call. Note that, in the
CopyBits call, the value passed in the tMode (transfer mode) parameter is incremented each time through the loop so that the
square image overdraws the cross image once in each of the eight available Boolean source modes. The three lines following
the CopyBits call retrieve the appropriate string containing the relevant source mode from the specified 'STR#' resource and
draw this string above each copied image.

The last line unlocks the icon image data.

doArithmeticSourceModes
doArithmeticSourceModes demonstrates the effects of the arithmetic source modes.

Since CopyBits will be called, the foreground and background colours are set to black and white respectively. The call to
FillRect clears the window to white.

The first call to GetPicture loads a 'PICT' resource into a Picture structure. (Since the 'PICT' resource is purgeable, it is made
non-purgeable immediately it is retrieved, used immediately, and immediately made purgeable again.) The call to
DrawPicture draws the picture in the top left of the window, where it is labelled as the source image.

The second call to GetPicture loads another 'PICT' resource which will be used as the destination image. The first for loop
draws this picture in the window at eight separate locations, these locations being determined by the rectangle passed in the
first parameter of the DrawPicture calls.

The last for loop is traversed once for each of the eight arithmetic source modes. CopyBits is called eight times to overdraw
the destination images with the source image. Note that the value in the tMode (transfer mode) parameter of the CopyBits
call is incremented each time around the loop. Note also that, each time around the loop, a new string is retrieved from a
'STR#' resource and drawn above the destination image.

Before doArithmeticSourceModes exits, ReleaseResource is called twice to free the memory allocated by the GetPicture calls.

doHighlighting
doHighlighting demonstrates highlighting, first with the colour set by the user in the Appearance pane of the Appearance
control panel (Mac OS 8/9) or in System Preferences (Mac OS X), and then with two colours set by the program.

Firstly, the highlight colour set by the user is saved via a call to LMGetHiliteRGB.

The for loop is traversed three times. On the second and third traverses, the highlight colour is changed.

Within the for loop, a copy of the value at the low memory global HiliteMode is retrieved using LMGetHiliteMode, BitClr is
called to clear the highlight bit, and LMSetHiliteMode is called to set to low memory global to this new value. At the if/else
block, the highlight colour is changed if this is the second or third time around the loop. With the highlight bit cleared,
InvertRect is called to invert a specified rectangle.

Note that the call to InvertRect resets the highlight bit. Accordingly, when the user clicks the mouse button, the highlight bit
is cleared once again before InvertRect is called once again. This second call restores the colour in the specified rectangle to
the background colour.

Before the doHighLighting function returns, it sets the highlight colour to the saved highlight colour.

Drawing With QuickDraw Version 1.0 12-45

doDrawWithMouse
doDrawWithMouse demonstrates the use of the mouse to define bounding rectangles for QuickDraw shape drawing functions.
It also demonstrates the implementation of the "rubber band" rectangle commonly used to provide visual feedback to the
user as he drags the mouse during such operations. (While the mouse button remains down, the "rubber-band" rectangle is
continually erased and redrawn as the mouse is moved. It is erased when the mouse button is released.)

doDrawWithMouse is called when a mouse-down occurs in the window while it is the front window, provided that the global
variable gDrawWithMouseActivated is set to true.

The call to GetPixPat loads a 'ppat' resource containing a small 8 pixel by 8 pixel pattern. This pixel pattern is assigned to the
pen by the call to PenPixPat. The call to PenSize makes the pen size one pixel high by one pixel wide. The pen pattern mode
is then set to patXOr. (Note: For a black-and-white "rubber band", replace the PenPixPat call with:

 PenPat(GetQDGlobalsGray(&grayPattern));

The call to GetMouse saves the initial mouse location to a Point variable. The contents of the fields of this variable will remain
unchanged. Those coordinates are also used to initialise the left and top fields of the Rect variable drawRect.

The next call to GetMouse assigns the initial location of the mouse to another Point variable. The contents of the fields of this
variable will continually change as the mouse is dragged.

The while loop continues to execute while the mouse button remains down. Within the loop, the current mouse location is
retrieved and compared with the previous mouse location (the first if statement). If the mouse has moved:

• FrameRect is called to draw the framed rectangle.

• If the current mouse horizontal coordinate is greater than or equal to the initial horizontal mouse coordinate, the current
mouse horizontal coordinate is assigned to the right field of the rectangle.

• If the current mouse vertical coordinate is greater than or equal to the initial vertical mouse coordinate, the current mouse
vertical coordinate is assigned to the bottom field of the rectangle.

• If the current mouse horizontal coordinate is less than or equal to the initial horizontal mouse coordinate, the current
mouse horizontal coordinate is assigned to the left field of the rectangle.

• If the current mouse vertical coordinate is less than or equal to the initial vertical mouse coordinate, the current mouse
vertical coordinate is assigned to the top field of the rectangle.

• FrameRect is called again with the newly defined rectangle passed in.

Because the drawing mode is patXor, the first call to FrameRect erases the old rectangle. Because FrameRect is only called if
the mouse has moved, the flicker which would otherwise occur when the mouse is stationary is avoided.

Below the if block, and preparatory to the next comparison of current and previous mouse location, the current mouse
location becomes the previous mouse location.

When the mouse button is released:

• The final call to FrameRect erases the final "rubber-band" rectangle.

• The foreground colour is set to a random colour, the pen pattern mode is set to patCopy, the pen pattern is set to black,
and the background pixel pattern is set to that previously used to draw the "rubber band".

• The rectangle as at mouse button release is used in calls to QuickDraw painting and erasing functions to draw rectangles,
round rectangles, ovals, and arcs. Just which function is called depends on the value returned by the call to
doRandomNumber.

• The background pattern is set to white.

doDrawingState
doDrawingState is similar to the function doDrawListView in the demonstration program Appearance, the difference being
that, in doDrawingState, the drawing state is saved at entry and restored at exit.

Note that the call to NormalizeThemeDrawingState or is included in this function for demonstration purposes only. Ordinarily,
this function would be called (if required) at other points in an application.

The call to GetThemeDrawingState saves the drawing state prior to the calls to the Appearance Manager functions
SetThemeBackground and SetThemePen, which will change either the colour or the pattern settings in the graphics port.

The call to SetThemeDrawingState restores the saved drawing state.

The intervening code simply draws a Mac OS 8/9-type list view in the left half of the window.

The calls to doDrawingStateProof are also for demonstration purposes only. As will be seen, this function simply draws
rectangles in the right half of the window in the pen and background colours and patterns as they were after the call to
NormalizeThemeDrawingState, after the calls to the Appearance Manager functions, and after the call to
SetThemeDrawingState.

12-46 Version 1.0 Drawing With QuickDraw

doDrawingStateProof
doDrawingStateProof is called by doDrawingState to draw rectangles in the right half of the window in the pen and
background colours and patterns as they were after the call to NormalizeThemeDrawingState, after the calls to the
Appearance Manager functions, and after the call to SetThemeDrawingState.

doRandomNumber
doRandomNumber are incidental to the demonstration.

The use of the QuickDraw random number generator is quite adequate for the purposes of this demonstration. However, a
professional programmer would not regard it as measuring up to the minimal standards of a "serious" random number
generator. (See the article on random number generators at
http://www.mactech.com/articles/mactech/Vol.08/08.03/RandomNumbers/index.html.)

Drawing With QuickDraw Version 1.0 12-47

	DRAWING WITH QUICKDRAW
	Demonstration Program: QuickDraw
	Introduction
	The Coordinate Plane, Points, Rectangles, and Regions
	The Coordinate Plane
	Points

	The data type for points is Point:
	Rectangles

	The data type for rectangles is Rect:
	Regions
	Region Objects and Accessor Functions

	One accessor function is provided to access the information in region objects:
	The Graphics Pen, Foreground and Background Colours, Pixel Patterns and Bit Patterns, and Transfer Modes
	The Graphics Pen
	Getting and Setting the Pen State

	The following functions are used to get and set the current pen state:
	Foreground and Background Colour
	Foreground Colour
	Background Colour

	Pixel Patterns and Bit Patterns
	Pixel Patterns
	Bit Patterns

	PenPat(GetQDGlobalsBlack(&blackPattern));
	BackPat(GetQDGlobalsWhite(&whitePattern));
	The PenPat and BackPat functions may also be used to set other bit patterns in the graphics port.
	Transfer Modes
	Boolean Pattern Modes
	Boolean Source Modes
	Arithmetic Source Modes

	Drawing Lines and Framed Shapes
	Functions for Drawing Lines

	Functions for moving the graphics pen and drawing lines are as follows:
	Functions for Drawing Framed Shapes

	Functions for drawing framed shapes are as follows:
	Framed Polygons and Regions
	Framed Polygons
	Framed Regions

	Drawing Painted and Filled Shapes
	Functions for Painting and Filling Shapes

	The following lists the available functions for painting and filling shapes:
	Wedges
	Painted and Filled Polygons and Regions

	Erasing and Inverting Shapes
	Functions for Erasing and Inverting Shapes

	The following list the available functions for painting and filling shapes:
	Drawing Pictures
	Drawing Text
	Setting the Font
	Setting and Modifying the Text Style
	Setting the Font Size
	Changing the Width of Characters
	Transfer Mode

	Copying Pixel Images Between Graphics Ports
	QuickDraw provides the following three functions for copying pixel images between graphics ports:
	Using Masks
	Transfer Modes
	The Importance of Foreground and Background Colour
	Dithering

	You can add dithering to any transfer mode by adding the following constant to the transfer mode:
	Copying From Offscreen Graphics Ports

	Scrolling Pixels in the Port Rectangle
	Manipulating Rectangles and Regions
	Manipulating Rectangles

	The following summarises the functions for manipulating, and performing calculations on, rectangles:
	Manipulating Regions

	The following summarises the functions for manipulating, and performing calculations on, regions:
	Manipulating Polygons
	Scaling Shapes and Regions Within the Same Graphics Port

	Highlighting
	Drawing Other Graphics Entities
	Saving and Restoring the Graphics Port Drawing State
	The following functions are used for saving, restoring, and normalising the graphics port drawing state:
	Main QuickDraw Constants, Data Types and Functions
	Constants
	Boolean Pattern Modes
	Boolean Source Modes
	Arithmetic Transfer Modes
	Add Dithering to Transfer Modes
	Highlighting
	Pattern List Resource ID for Pattern Resources in the System File

	Data Types
	Point
	Rect
	Region
	Polygon
	PenState

	Functions
	Managing the Graphics Pen
	Getting and Setting Foreground, Background , and Pixel Colour
	Creating and Disposing of Pixel Patterns
	Getting Pattern Resources
	Changing the Pen and BackGround Pixel Pattern and Bit Pattern
	Drawing Lines
	Drawing Rectangles
	Drawing Rounded Rectangles
	Drawing Ovals
	Drawing Arcs and Wedges
	Drawing and Painting Polygons
	Drawing Regions
	Setting Text Characteristics
	Drawing and Measuring Text
	Copying Images
	Getting and Setting the Highlight Colour and HighLight Mode
	Creating and Disposing of Colour Tables
	Creating and Managing Polygons
	Creating and Managing Rectangles
	Creating and Managing Regions
	Scaling and Mapping Points, Rectangles, Polygons, and Regions
	Determining Whether QuickDraw has Finished Drawing
	Retrieving Color QuickDraw Result Codes
	Managing Port Rectangles and Clipping Regions
	Manipulating Points in Graphics Ports

	Relevant Appearance Manager Data Types and Functions
	Data Types
	Functions

	Demonstration Program QuickDraw Listing
	Demonstration Program QuickDraw Comments
	defines
	Global Variables
	main
	doEvents
	doDemonstrationMenu
	doLines
	Lines Drawn With Foreground Colour And Black Pen Pattern
	Lines Drawn With System-Supplied Bit Patterns
	Lines Drawn With A Pixel Pattern
	Lines Drawn With Pattern Mode patXor

	doFrameAndPaint
	Preparation
	Framing and Painting

	doFillEraseInvert
	Preparation
	Filling, Erasing, and Inverting

	doPolygonAndRegion
	Preparation
	Framing, Painting, Filling, And Erasing

	doText

	After the loop exits, the text font, size and style are returned to Geneva 10pt plain.
	doScrolling
	doBooleanSourceModes

	The foreground and background colours are again reset to black and white.
	doArithmeticSourceModes
	doHighlighting

	Firstly, the highlight colour set by the user is saved via a call to LMGetHiliteRGB.
	doDrawWithMouse

	PenPat(GetQDGlobalsGray(&grayPattern));
	doDrawingState

	The call to SetThemeDrawingState restores the saved drawing state.
	The intervening code simply draws a Mac OS 8/9-type list view in the left half of the window.
	doDrawingStateProof
	doRandomNumber

